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Chaperone client proteins evolve slower than non-client proteins
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Abstract
Chaperones are important molecular machinery that assists proteins to attain their native three-dimensional structure crucial for
function. Earlier studies using experimental evolution showed that chaperones impose a relaxation of sequence constraints on
their “client” proteins, which may lead to the fixation of slightly deleterious mutations on the latter. However, we hypothesized
that such a phenomenon might be harmful to the organism in a natural physiological condition. In this study, we investigated the
evolutionary rates of chaperone client and non-client proteins in five model organisms from both prokaryotic and eukaryotic
lineages. Our study reveals a slower evolutionary rate of chaperone client proteins in all five organisms. Additionally, the slower
folding rate and lower aggregation propensity of chaperone client proteins reveal that the chaperone may play an essential role in
rescuing the slightly disadvantageous effects due to randommutations and subsequent protein misfolding. However, the fixation
of such mutations is less likely to be selected in the natural population.
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Introduction

Protein synthesis is an expensive cellular process in the cell
that costs ~ 60% of ATP in bacteria (Park et al. 2009;
Stouthamer 1973) and ~ 90% ATP in the mammalian cell
(Schwanhäusser et al. 2011). To maintain the cost efficiency,
the synthesized proteins must fold into their stable native
structures. In Escherichia coli, 10 to 15% of cytoplasmic pro-
teins require special assistance of GroEL (Ewalt et al. 1997)
and ~ 20% require DnaK and DnaJ for their folding (Hartl and
Hayer-Hartl 2009), which increases such cost efficiency by
restoring their native structure(s) (De Maio 1999;
Georgopoulos 1992; Wickner et al. 1999). Chaperones are
specialized proteins that interact with the unfolded/misfolded

proteins (known as “client proteins”) and help them to fold
into their native structure through different energy-driven
mechanisms (Hartl and Hayer-Hartl 2009). This property of
chaperone may also help their client proteins to tolerate the
deleterious effects of mutations (Aguilar-Rodríguez et al.
2016; Rutherford 2003; Rutherford and Lindquist 1998;
Tokuriki and Tawfik 2009). Several studies showed that the
disease-causing missense mutations (which cause misfolding,
misassembly, and aggregation) were successfully treated by
the chemical chaperones (Park et al. 2009; Singh et al. 2007;
Suzuki 2014) possibly due to their “stress tolerance” (Estruch
2000). However, the quality control of misfolded/unfolded
proteins does not solely depend on chaperone but also in-
volves proteases, where both can recognize the exposed hy-
drophobic regions in unfolded/misfolded proteins (Wickner
et al. 1999).

Unlike the function of chaperones, the proteases eliminate
damaged proteins from the cellular system by the energy-
dependent process (Goldberg 2003). More importantly, a siz-
able fraction (~ 30%) of nascent proteins are degraded due to
the error in translation (Goldberg and Dice 1974; Schubert
et al. 2000). The “molecular triage” (whether a misfolded
protein will be destroyed or refolded properly) of non-native
protein structures was determined by the kinetics of
partitioning between chaperones and proteases (Wickner
et al. 1999). Studies also showed that chaperones and co-
chaperones could trigger protease activity (McDonough and
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Patterson 2003) which may degrade mutant proteins
(Sherman and Goldberg 1992). Therefore, the misfolded/
unfolded proteins due to the mutation(s) on the gene may
undergo degradation instead of refolding in natural physiolog-
ical condition, and become a costly biological waste (Tomala
and Korona 2008).

In natural physiological condition, endosymbiotic bacteria
accumulate mildly deleterious mutations than the free-living-
related lineages, but the altered proteins show native function
in the presence of high expression level of the chaperone in
those bacteria (Moran 1996). Experiments also suggested that
the chaperones buffer the deleterious effect of mutations
(Fares et al. 2002; Williams and Fares 2010) and increase
mutational robustness in chaperone-rich environment
(Aguilar-Rodríguez et al. 2016). However, chaperone clients
still evolve slower, maybe due to the other factors that influ-
ence the evolutionary rate (Williams and Fares 2010). But
interestingly, most of the experiments designed to study the
role of chaperone buffering are performed by overexpressing
the chaperone(s) (Aguilar-Rodríguez et al. 2016; Tokuriki and
Tawfik 2009), which may imbalance the naturally occurring
chaperone-protease kinetics. Moreover, the overexpression of
a chaperone is energetically expensive (Sabater-Munoz et al.
2015) which may affect the growth rate due to the decline in a
cell’s energy budget (Wagner 2005). In accordance with this
idea, Geiler-Samerotte et al. (2016) also reported that Hsp90
plays a “potentiator” role on genetic variation (which can be
considered as mutation) to reduce selection pressure.

In this study, we analyzed the effect of chaperone buffering
in controlling the protein evolution of their client in
Escherichia coli, Thermus aquaticus, Saccharomyces
cerevisiae, Drosophila melanogaster, and Homo sapiens.
We observed chaperone client proteins evolve slower than
the non-client proteins in all organisms and the chaperone
client type (whether a protein is chaperone client or not client)
imposes an independent effect on the evolutionary rates.
Moreover, chaperone client proteins are highly expressed
and highly connected proteins but their folding rates are
slower than the non-client proteins. Thus, they require the
assistance of chaperone to avoid aggregation; otherwise, it
would be energetically costly for the living cell.

Result and discussion

Analysis of protein evolution

At first, we compared evolutionary rates between chaperone
client and non-client proteins in Escherichia coli to test the
effect of chaperone buffering in protein evolution. We used
one-to-one orthologous genes of Salmonella enterica to cal-
culate the evolutionary rates of E. coli. We retrieved all chap-
erone proteins (supplementary table S1) from Uniprot

(Bateman et al. 2017) and identified chaperone client proteins
using the protein-protein interaction network from BioGRID
database (version 3.4.152) (Chatr-Aryamontri et al. 2017) (see
“Materials and methods” for further details). Interestingly, we
observed that chaperone client protein evolve significantly
slower than non-client protein (average dN/dSclient = 0.047,
average dN/dSnon-client = 0.051, P = 5.7 × 10−6, Mann–
WhitneyU test, Fig. 1a). In general, many of these chaperones
play a specific role, like assisting the transport of proteins
across biological membranes or are promiscuous binders of
proteins destabilized by stressful conditions to prevent their
cytotoxic aggregation. Their mechanisms of action are poorly
characterized, and they are very different from other more
important, complex, and essential chaperones. Thus, it is im-
portant to analyze the precise chaperone client dataset to con-
fer significant result. In E. coli, DnaK and GroEL play the
essential role as protein folding chaperone, and they are well
studied. Thus, we retrieved the experimentally validated chap-
erone clients of DnaK and GroEL from Calloni et al. (2012))
and Kerner et al. (2005) respectively as source of reliable
chaperone client data, and observed that same trend persists
within client and non-client proteins (average dN/dSDnaK cli-

ent = 0.045, average dN/dSnon-client = 0.052, P = 1.6 × 10−15,
Mann–Whitney U test, Fig. 1b; average dN/dSGroEL client =
0.049, average dN/dSnon-client = 0.050, P = 2.4 × 10−5, Mann–
Whitney U test, Fig. 1c). Moreover, in E. coli, the GroEL
chaperone clients are specifically characterized as partial, ob-
ligate, and non-specific clients according to their chaperone-
dependent folding probability (Kerner et al. 2005). The obli-
gate GroEL chaperone client proteins essentially require
GroEL for the folding processes. Whereas, partial GroEL
chaperone clients require GroEL whenever the proteins step
into the misfolding state. There is yet another group of protein
category, known as non-specific GroEL client protein.
Irrespective of their folding requirements, they bind to
GroEL present in the cellular environment. Interestingly, here
we also observed that both obligate and partial chaperone
clients evolve slower than non-client proteins in E. coli (aver-
age dN/dSGroEL obligate client = 0.041, average dN/dSnon-client =
0.052, P = 2.3 × 10−3, Mann–Whitney U test; average dN/
dSGroEL partial client = 0.045, average dN/dSnon-client = 0.052,
P = 1.0 × 10−3, Mann–Whitney U test, Fig. 1c), but no signif-
icant difference is observed in evolutionary rate between non-
specific and non-client proteins (average dN/dSGroEL non-

specific client = 0.085, average dN/dSnon-client = 0.052, P =
6.3 × 10−1, Mann–Whitney U test, Fig. 1c). These results in-
dicate that chaperone clients evolve slower than non-client
proteins in E. coli irrespective of dataset.

To get a more general view, we chose four organisms, one
prokaryote extremophile (Thermus aquaticus), one unicellular
eukaryote (Saccharomyces cerevisiae), and two multicellular
eukaryotes (Drosophila melanogaster and Homo sapiens) to
analyze the evolutionary rate differences between chaperone

Funct Integr Genomics



client and non-client proteins (details in supplementary mate-
rial). The similar trend follows in each of the organism
(T. aquaticus: average dN/dSclient = 0.044, average dN/dSnon-
client = 0.059, P = 2.2 × 10−13, Mann–Whitney U test;
S. cerevisiae: average dN/dSclient = 0.057, average dN/dSnon-
client = 0.070, P = 2.7 × 10−19, Mann–Whitney U test;
D. melanogaster: average dN/dSclient = 0.113, average dN/
dSnon-client = 0.152, P = 6.2 × 10−6, Mann–Whitney U test;
H. sapiens: average dN/dSclient = 0.272, average dN/dSnon-cli-
ent = 0.357, P = 1.9 × 10−29, Mann–Whitney U test, Fig. 2) as
observed in E. coli. Therefore, it can be inferred that the chap-
erone client proteins inherently have slower evolutionary rates
in prokaryotes as well as in eukaryotes.

Effect of protein abundance and network centrality
in controlling the evolutionary rates

Previously,Williams and Fares also observed chaperone client
proteins evolve slower than non-client proteins in E. coli, but
they attributed this trend as an artifact of other factors that
influence evolutionary rate (Williams and Fares 2010).
Generally, gene/protein expression and network centrality
play major role in controlling the evolutionary rates
(Alvarez-Ponce et al. 2017; Drummond et al. 2006). Here,
we downloaded E. coli, S. cerevisiae, D. melanogaster, and
H. sapiens protein abundances from PaxDb database (version
4.1) (Wang et al. 2015) and protein-protein interaction

Fig. 2 Evolutionary rates of chaperone client and non-client protein in
different organisms. a T. aquaticus, b S. cerevisiae, c D. melanogaster,
and d H. Sapiens. Chaperone clients were predicted using STRING

database (version 10.5) for T. Aquaticus and BioGRID database (version
3.4.152) for other three organisms. Statistical significance is calculated by
Mann–Whitney U test

Fig. 1 Evolutionary rates of chaperone client and non-client protein in
E. coli. a Chaperone clients were predicted using BioGRID database
(version 3.4.152), b DnaK chaperone clients were retrieved from

Calloni et al. (2012), c GroEL chaperone clients were retrieved from
Kerner et al. (2005). Statistical significance is calculated by Mann–
Whitney U test
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network (PPIN) from BioGRID database (version 3.4.152)
(Chatr-Aryamontri et al. 2017) and observed that both factors
show significant correlation with evolutionary rates in E. coli
(Spearman’s ρprotein abundance – evolutionary rates = − 0.224, P =
2.6 × 10−29, N = 2460; Spearman’s ρPPIN – evolutionary rates = −
0.108, P = 8.3 × 10−8, N = 2459), S. cerevisiae (Spearman’s
ρprotein abundance – evolutionary rates = − 0.277, P = 1.8 × 10−52,
N = 2914; Spearman’s ρPPIN – evolutionary rates = − 0.195, P =
2.5 × 10−26, N = 2896), D. melanogaster (Spearman’s ρprotein
abundance – evolutionary rates = − 0.327, P = 8.7 × 10−119,N = 4739;
Spearman’s ρPPIN – evolutionary rates = − 0.157, P = 4.6 × 10−24,
N = 4099), and H. sapiens (Spearman’s ρprotein abundance – evo-

lutionary rates = − 0.228, P = 2.7 × 10−113, N = 9602; Spearman’s
ρPPIN – evolutionary rates = − 0.186, P = 8.1 × 10−76, N = 9683).
However, the protein abundance data is unavailable in
T. aquaticus, but Ghaemmaghami et al. (2003) observed
Codon Adaptation Index (CAI) (Sharp and Li 1987) is strong-
ly correlated with protein abundance and therefore can be used
as an approximation of protein abundance. Here, we also ob-
served significant positive correlations between protein abun-
dance and CAI in all four organisms; the correlations were
stronger in unicellular organisms probably due to their less
complex cell type (Table 1). Thus, in this study, we used
CAI as an approximation of protein abundance for
T. aquaticus and observed protein-protein interaction (PPI)
(calculated from STRING database (version 10.5)
(Szklarczyk et al. 2017)) and CAI significantly correlated with
evolutionary rates (Spearman’s ρCAI – evolutionary rates = −
0.411, P = 9.8 × 10−44, N = 1044; Spearman’s ρPPIN – evolution-

ary rates = − 0.259, P = 1.8 × 10−17, N = 1044). These results
indicate that protein evolutionary rate is significantly con-
trolled by protein-protein interaction and protein abundance.
Interestingly, we also observed that chaperone client proteins
have higher protein abundance and high protein-protein inter-
actions than non-client proteins in all studied organisms
(Table 2). Therefore, it is possible that the slower evolutionary
rate of chaperone client proteins may be the artifacts of their
higher protein abundance and high interaction as proposed by
Williams and Fares (2010). To eliminate the effect of protein
abundance, we randomly chose 300 chaperone client proteins
from the DnaK client dataset of E. coli (since this dataset has a
large number of experimentally curated client protein), and
then we randomly chose 300 unique non-client proteins which

correspond to each client protein with a very similar protein
abundance level (i.e., the difference of protein abundance be-
tween each client and non-client protein must be less than 5%
of the corresponding client protein) so that there is no statisti-
cal difference (95% level of confidence) of protein abundance
between client and non-client protein. We measured the dif-
ference in evolutionary rates between chaperone client and
non-client proteins with 95% level of confidence (P < 0.05,
Mann–WhitneyU test). Repeating this process for 1000 times,
we found in 805 (~ 80.50%) cases the client proteins evolves
slower (Mann–Whitney U test, P < 0.05) than the non-client
proteins despite their similar protein abundance (Mann–
Whitney U test, P > 0.05). Similarly, we controlled the PPI
and observed in 994 (~ 99.40%) cases the client evolves
slower (Mann–Whitney U test, P < 0.05) than the non-client
proteins despite the similar protein-protein interaction (Mann–
Whitney U test, P > 0.05). These two results indicate that the
slower evolutionary rate of chaperone client protein is not the
artifact of protein abundance or protein-protein interaction,
but chaperone client imposes an intrinsic constraint on their
protein evolution. But, in this method, we can control only one
variable at a time between protein abundance and protein-
protein interaction. To account for both the factors, we used
normalized values of evolutionary rates, protein abundance,
and protein-protein interaction in ANCOVA and observed
chaperone client independently controlled (P < 0.05) the pro-
tein evolutionary rates in all organisms (Table 3).

Furthermore, we also performed principal component
regression (PCR) analysis (using evolutionary rates as a
dependent variable), which is considered a suitable meth-
od to establish the relative contributions of factors that
influence protein evolution (Drummond et al. 2006). We
observed these three parameters (protein abundance, PPI,
and chaperone client) explained total (including all three
principal components) 6.02% variance of evolutionary
rates, in which protein abundance explained 2.55%, chap-
erone client type explained 1.81%, and PPI explained
1.66% in E. coli (DnaK client dataset) (Table 4). The trend
is similar in other datasets of E. coli. Here, chaperone
client type explains the comparable amount of the varia-
tion of evolutionary rates as protein abundance and PPI
(Table 4). Moreover, in the other four organisms, we also
observed consistent trends (Table 4). These results also

Table 1 Correlation between
protein abundance and CAI in
different organisms

Organism Spearman correlation between protein abundance and Codon Adaptation Index

E. coli ρ= 0.552, N= 2460, P = 4.2 × 10−196

S. cerevisiae ρ= 0.639, N = 2914, P < 1.0 × 10−196

D. melanogaster ρ= 0.353, N = 4739, P = 4.2 × 10−139

H. sapiens ρ= 0.081, N = 9602, P = 1.3 × 10−15
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indicate that slower evolutionary rate of chaperone client
proteins is independent of the effect of other covariates.

Characteristics of chaperone client protein

Generally, the larger proteins (> 100 amino acids) reach their
native state via different folding intermediate stages that act as
“stepping stones” (Brockwell and Radford 2007), but

chaperone client proteins become trapped into those folding
intermediates and expose their hydrophobic surfaces that inter-
act with chaperones to rescue their native structures (Hartl et al.
2011; Raineri et al. 2010). Even, the protein folding rate also
helps to reach their native structures (Raineri et al. 2010), and
may also influence the protein aggregation propensity (van den
Berg et al. 1999). We calculated the protein aggregation pro-
pensity using TANGO algorithm (Fernandez-Escamilla et al.

Table 2 Protein abundance and protein-protein interactions of chaperone client and non-client protein in different organisms

Organism Group Average protein abundance Average protein-protein interaction

E. coli Chaperone client (BioGRID)
Non-client

0.539 (N = 657)
0.445 (N = 1803)

P = 4.8 × 10−37 101.5 (N = 657)
43.6 (N = 1802)

P = 3.8 × 10−114

DnaK client
Non-client

0.589 (N = 572)
0.434 (N = 1888)

P = 1.6 × 10−96 84.7 (N = 572)
51.3 (N = 1887)

P = 1.1 × 10−36

GroEL client
Non-client

0.593 (N = 246)
0.457 (N = 2214)

P = 1.9 × 10−39 92.2 (N = 246)
55.4 (N = 2213)

P = 1.3 × 10−17

T. aquaticus Chaperone client (STRING)
Non-client

0.765* (N = 293)
0.746* (N = 751)

P = 8.2 × 10−8 105 (N = 293)
51.4 (N = 751)

P = 1.3 × 10−51

S. cerevisiae Chaperone client (BioGRID)
Non-client

0.618 (N = 1929)
0.517 (N = 985)

P = 8.3 × 10−99 35.3 (N = 1929)
12.8 (N = 967)

P = 7.1 × 10−86

D. melanogaster Chaperone client (BioGRID)
Non-client

0.614 (N = 147)
0.522 (N = 4592)

P = 7.4 × 10−11 35.6 (N = 203)
9.3 (N = 3896)

P = 1.0 × 10−50

H. sapiens Chaperone client (BioGRID)
Non-client

0.514 (N = 1617)
0.410 (N = 7985)

P = 4.1 × 10−124 78 (N = 1996)
22.3 (N = 7727)

P < 1.0 × 10−196

Chaperone clients were predicted using STRING database (version 10.5) for T. Aquaticus and BioGRID database (version 3.4.152) for
other organisms. Additionally, for E. coli, DnaK chaperone clients were retrieved from Calloni et al. (2012) and GroEL chaperone clients
were retrieved from Kerner et al. (2005). Statistical significance calculated by Mann–Whitney U test

*Codon Adaptation Index is used as an alternative to protein abundance in T. aquaticus

Table 3 Results of ANCOVA
Organism Dataset Variables F value

E. coli Chaperone client (BioGRID) Chaperone client type 24.73, P = 7.0 × 10−7

Non-client Protein abundance 119.07, P = 4.2 × 10−27

Protein-protein interaction 7.57, P = 5.6 × 10−3

DnaK client Chaperone client type 53.19, P = 4.0 × 10−13

Non-client Protein abundance 95.00, P = 4.8 × 10−22

Protein-protein interaction 9.03, P = 2.7 × 10−3

GroEL different class client Chaperone client type 6.64, P = 3.7 × 10−6

Non-client Protein abundance 120.29, P = 2.3 × 10−27

Protein-protein interaction 10.35, P = 1.3 × 10−3

T. aquaticus Chaperone client (STRING) Chaperone client type 57.83, P = 7.9 × 10−14

Non-client Codon Adaptation Index 145.80, P = 1.6 × 10−31

Protein-protein interaction 15.79, P = 7.6 × 10−5

S. cerevisiae Chaperone client (BioGRID) Chaperone client type 60.39, P = 1.1 × 10−14

Non-client Protein abundance 136.75, P = 6.7 × 10−31

Protein-protein interaction 27.15, P = 2.0 × 10−7

D. melanogaster Chaperone client (BioGRID) Chaperone client type 6.52, P = 1.1 × 10−2

Non-client Protein abundance 425.84, P = 3.3 × 10−87

Protein-protein interaction 18.38, P = 1.9 × 10−5

H. sapiens Chaperone client (BioGRID) Chaperone client type 71.14, P = 3.9 × 10−17

Non-client Protein abundance 320.16, P = 3.0 × 10−70

Protein-protein interaction 71.48, P = 3.3 × 10−17
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2004), and compared the aggregation propensity between chap-
erone client and non-client proteins in all five organisms. We
observed that the chaperone client proteins have low aggrega-
tion propensity than non-client proteins in all organisms
(Table 5).

Using the sequence-based protein folding rates predic-
tion by SeqRate (Lin et al. 2010), we calculated the fold-
ing rate of the protein. Due to computational limitations,

we calculated the folding rate of proteins only in E. coli
and S. cerevisiae. Interestingly, we observed chaperone
client proteins also show a slow folding rate than non-
client proteins (E. coli: average folding rateclient = 420.39
protein/s, average folding ratenon-client = 455 protein/s;
Mann–Whitney U test, P = 7.0 × 10−4; S. cerevisiae: aver-
age folding rateclient = 151.63 protein/s, average folding
ratenon-client = 417.72 protein/s; Mann–Whitney U test,

Table 4 Principal component
regression analysis performed
using evolutionary rates as a
dependent variable

Organism Group Variable F statistics Variation explained (in %)

PC1 PC2 PC3 Total

E. coli Chaperone client
(BioGRID)

Non-client

Chaperone client
type

F = 50.46

P = 1.2 × 10−31
1.40 0.00 0.00 1.40

Protein
abundance

1.10 1.44 0.01 2.55

Protein-protein
interaction

1.64 0.20 0.00 1.84

E. coli DnaK client

Non-client

Chaperone client
type

F = 52.41

P = 7.9 × 10−33
1.77 0.00 0.04 1.81

Protein
abundance

2.08 0.00 0.47 2.55

Protein-protein
interaction

1.61 0.00 0.05 1.66

E. coli GroEL client

Non-client

Chaperone client
type

F = 51.08

P = 5.1 × 10−32
1.25 0.01 0.02 1.28

Protein
abundance

2.03 0.07 0.57 2.67

Protein-protein
interaction

1.78 0.08 0.06 1.92

T. aquaticus Chaperone client
(STRING)

Non-client

Chaperone client
type

F = 72.99

P = 7.6 × 10−43
5.10 0.27 0.00 5.37

Codon
Adaptation
Index

2.65 3.25 0.01 5.91

Protein-protein
interaction

5.52 0.59 0.00 6.11

S. cerevisiae Chaperone client
(BioGRID)

Non-client

Chaperone client
type

F = 74.77

P = 1.4 × 10−46
1.98 0.01 0.00 1.99

Protein
abundance

2.27 0.23 0.17 2.67

Protein-protein
interaction

2.22 0.26 0.05 2.53

D. melanogaster Chaperone client
(BioGRID)

Non-client

Chaperone client
type

F = 153.20

P = 8.0 × 10−91
2.49 0.16 0.00 2.65

Protein
abundance

3.35 3.41 0.82 7.58

Protein-protein
interaction

4.31 1.49 0.07 5.87

H. sapiens Chaperone client
(BioGRID)

Non-client

Chaperone client
type

F = 154.30

P = 3.3 × 10−97
1.20 0.00 0.00 1.20

Protein
abundance

1.64 0.33 0.00 1.97

Protein-protein
interaction

2.04 0.22 0.00 2.26

Principal component regression is performed with evolutionary rates as dependent variable and chaperone client
type, protein abundance, and protein-protein interaction as independent variables. We used principal component
regression model pcr(Evolutionary rates ~ chaperone client type + protein abundance (or, Codon Adaptation
Index) + protein-protein interaction)
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P = 4.5 × 10−4). Earlier, Raineri et al. (2010) also expected
that proteins with slower folding rate may show low ag-
gregation propensity. Thus, accumulation of folding inter-
mediates with exposed hydrophobic regions may increase
the overall aggregation when translated in a chaperone-
free system (Niwa et al. 2009).

Conclusion

In general, mutations are expected to occur at the same rate in the
same species in wild condition as well as in the laboratory con-
dition, but reduced population size in the laboratory strain may
result in reduced efficacy of natural selection (Charlesworth
2009) which may allow the fixation of slightly deleterious mu-
tations (Ohta 1973), especially when there is an added quality
control mechanism in the system. Thus, chaperone client pro-
teins might tolerate mutational perturbation in chaperone-rich
media in the earlier experiment (Aguilar-Rodríguez et al.
2016). This observation indicates that chaperones may buffer
slightly deleterious mutations, and thus these mutations become
neutral and can be tolerated (probably with the reduced function-
ality). However, in natural condition, mutated polypeptides may
increase misfolding and that may become a permanent burden
for the cellular system in terms of the energetic cost. For this
reason, the slightly disadvantageous random mutations are less
likely to be selected in the natural population. Therefore, chap-
erones may promote genetic variation (Moran 1996) but this
transient variation stands for shorter duration compared with
the evolutionary time scale.

Materials and methods

Evolutionary rates

For each Escherichia coli genes, we identified one-to-one
orthologous genes from Salmonella enterica using reciprocal
best hits with cutoff E-value ≤ 10−5, gap < 5, and identity ≥
80% by the BlastP algorithm (Altschul et al. 1997). The same
methods were used to retrieve Thermus aquaticus–Thermus
scotoductus, Saccharomyces cerevisiae–Saccharomyces
bayanus, Drosophila melanogaster–Drosophila simulans,
and Homo sapiens–Pan troglodytes orthologous genes. We
d o w n l o a d e d a l l C D S o f E s c h e r i c h i a c o l i
(GCF_000005845.2_ASM584v2), Salmonella enteric
(GCF_000195995.1_ASM19599v1), Thermus aquaticus
(GCF_001399775.1_ASM139977v1), Thermus scotoductus
(GCF_000187005.1_ASM18700v1), Saccharomyces
cerevisiae (GCF_000146045.2_R64), Drosophila
m e l a n o g a s t e r
(GCF_000001215.4_Release_6_plus_ISO1_MT),
Drosophila simulans (GCF_000754195.2_ASM75419v2),
Homo sapiens (GCF_000001405.38_GRCh38.p12), and
Pan troglodytes (GCF_002880755.1_Clint_PTRv2) from
NCBI RefSeq (Prui t t e t a l . 2007) and ORFs of
Saccharomyces bayanus were downloaded from
Saccharomyces Genome Database (https://downloads.
yeastgenome.org/sequence/fungi/S_bayanus/archive/MIT/
orf_dna/orf_genomic.fasta.gz) (Cherry et al. 2012). Each
orthologous protein pairs were aligned by ClustalW
(Thompson et al. 2002) and the corresponding CDS pairs
were aligned by pal2nal algorithm (Suyama et al. 2006) using

Table 5 Protein aggregation of
chaperone client and non-client
protein in different organisms

Organism Group Average protein aggregation

E. coli Chaperone client (BioGRID)

Non-client

1934.18 (N = 657)

2902.06 (N = 1808)

P = 1.1 × 10−2

DnaK client

Non-client

1163.86 (N = 572)

3091.36 (N = 1893)

P = 1.3 × 10−18

GroEL client

Non-client

977.72 (N = 246)

2828.82 (N = 2219)

P = 2.0 × 10−13

T. aquaticus Chaperone client (STRING)

Non-client

1798.51 (N = 293)

2270.89 (N = 751)

P = 1.1 × 10−2

S. cerevisiae Chaperone client (BioGRID)

Non-client

214.13 (N = 1929)

393.94 (N = 986)

P = 1.5 × 10−10

D. melanogaster Chaperone client (BioGRID)

Non-client

256.73 (N = 287)

498.07 (N = 9900)

P = 4.0 × 10−9

H. sapiens Chaperone client (BioGRID)

Non-client

2367.94 (N = 1948)

3229.81 (N = 9559)

P = 1.8 × 10−12

Chaperone clients were predicted using STRING database (version 10.5) for T. Aquaticus and BioGRID database
(version 3.4.152) for other organisms. Additionally, for E. coli, DnaK chaperone clients were retrieved from
Calloni et al. (2012) and GroEL chaperone clients were retrieved fromKerner et al. (2005). Statistical significance
is calculated by Mann–Whitney U test
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the protein alignment as a template. For each of the resulting
alignments, the evolutionary rates (nonsynonymous (dN) to
synonymous ratio (dS)) were estimated with CodeML in
PAML (version 4.9) (Yang 2007).

Protein-protein interaction data

We downloaded E. coli, S. cerevisiae, D. melanogaster, and
H. sapiens protein-protein interactions from BioGRID data-
base (version 3.4.152) (Chatr-Aryamontri et al. 2017), and
T. aquaticus protein-protein interactions from STRING data-
base (version10.5) (Szklarczyk et al. 2017) with confidence
score ≥ 40% (Chakraborty and Alvarez-Ponce 2016).We only
considered physical interactions and removed the self-
interaction from our dataset.

Chaperone client proteins

We collected the chaperones of E. coli and T. aquaticus from
Uniprot (Bateman et al. 2017), S. cerevisiae from Gong et al.
(2009), D. melanogaster from Sorensen et al. (2005) and
Tower (2011), and H. sapiens from multiple sources
(Apweiler et al. 2004; Arakawa et al. 2010; Burdette et al.
2010; Chen et al. 2005; Chung et al. 2002; Dafforn et al.
2001; Hasson et al. 2013; Hietakangas et al. 2006;
Kampinga et al. 2009; Lamb et al. 2000; Mymrikov et al.
2017; Myung et al. 2004; Nagaraj et al. 2012; Nisemblat
et al. 2015; Qiu et al. 2006; Rabindran et al. 1991; Rauch
and Gestwicki 2014; Seo et al. 2010; Sheldon and Kingston
1994; Takayama et al. 1999; Tsao et al. 2006; Vainberg et al.
1998; Wheeler and Jia 2015; Yoshida et al. 2001). We
downloaded E. coli, S. cerevisiae, D. melanogaster, and
H. sapiens protein-protein interactions from BioGRID data-
base (version 3.4.152) (Chatr-Aryamontri et al. 2017), and
T. aquaticus protein-protein interactions with confidence
score ≥ 40% (Chakraborty and Alvarez-Ponce 2016) from
STRING database (version 3.4.152) (Szklarczyk et al.
2017). Then we mapped E. coli, T. aquaticus, S. cerevisiae,
D. melanogaster, and H. sapiens chaperones into their corre-
sponding protein-protein interaction partners to retrieve chap-
erone client proteins in each species. We also downloaded
experimentally validated DnaK and GroEL client data form
Calloni et al. (2012) and Kerner et al. (2005).

Protein abundance data

We downloaded integrated protein abundance data of
Escherichia coli, Saccharomyces cerevisiae, Drosophila
melanogaster, and Homo sapiens from PaxDb database
(Wang et al. 2015). For Thermus aquaticus, we calculated
the Codon Adaptation Index (CAI) (Sharp and Li 1987) as
an alternative representation of protein abundance using in-
house PERL script.

Protein folding rate

We used SeqRate (Lin et al. 2010) algorithm from the
MULTICOM toolbox (http://sysbio.rnet.missouri.edu/
multicom_toolbox/) (Cheng et al. 2012) to calculate pro-
tein folding. SeqRate uses protein sequences to predict
protein folding rate with support vector machine (Lin
et al. 2010).

Protein aggregation propensity

Aggregation propensity of proteins was calculated using
TANGO algorithm (Fernandez-Escamilla et al. 2004).
TANGO uses protein sequences to predict β-aggregation pro-
pensity score.

Statistical analysis

We used Mann–Whitney U test to compare the signifi-
cant difference between the two groups. To calculate
correlation, we used Spearman’s rank correlation. We
performed ANCOVA and principal component regres-
sion (PCR) analysis using evolutionary rates as the de-
pendent variable taking chaperone client type, protein
abundance (or, Codon Adaptation Index), and protein-
protein interaction as the independent variables.
Generally, evolutionary rates and protein abundance are
exponentially distributed and protein-protein interaction
is scale-free distributed. Thus, to perform ANCOVA and
PCR, we transformed these three variables to fit the
normal distribution. We used R language and environ-
ment (https:/ /www.r-project.org/) to perform all
statistical analyses.

ANCOVA is performed with evolutionary rates as depen-
dent variable and chaperone client type, protein abundance,
and protein-protein interaction as independent variables. We
used ANCOVA model lm (evolutionary rates ~ chaperone
client type + protein abundance (or Codon Adaptation
Index) + protein-protein interaction)
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