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Terminologies:

Mya- Million years ago

DNA- Deoxyribonucleic Acid

RNA- Ribonucleic Acid

MRNA- Messanger RNA

tRNA- Transfer RNA

rRNA- Ribosomal RNA

Pu- Purines

Py- Pyrimidines

dN- Nonsynonymous nucleotide substitution per nonsynonymous sites
dS- Synonymous nucleotide substitution per synonymous sites
PPI- Protein-Protein Interaction

P - Proportion of Essential genes

WGD- Whole-Genome Duplication/ Whole-Genome Duplicates

SSD- Small-Scale Duplication/ Small-Scale Duplicates

Databases:

GO- Gene Ontology

OGEE- Online Gene Essentiality Database
HGMD- Human Gene Mutation Database

HPA- Human Protein Atlas
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Chapter 1

Introduction

Nothing in Biology Makes Sense Except in the Light of \
Evolution.”

—Theodosius Dobzhansky (1973)

Evolution: the process behind all life forms in the earth

The term ‘evolution’ was originated from Latin ‘evolutio’ that means
‘unrolling’ or ‘unfolding’. In biology, ‘evolution’ refers to the changes
acquired by an organism over successive generations. Although the
foundation of biological evolution is based on Charles Darwin’s
famous book “On the Origin of Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life”, the
word ‘evolution’ was carefully avoided by Darwin in this book.
Evolution depicts the generation of complex organisms from pre-
existing simpler ones, upon acquiring changes that are required for
such an increase in complexity. Such changes are very slow and begin
at the molecular levels. However, the cumulative effect of such
changes are large in course of billions of years and is the reason of
such a huge variety of existing life forms existing today. In this thesis,
we will focus on evolution at the molecular level, that bring changes to

the sequence of gene, which is the unit of heredity and serves as the

\functional unit of life. /
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1.1. Origin of life on Earth:
1.1.1. The ancient environment of the Earth:

Starting from the formation of the earth to the origin of life which
subsequently resulted in such a massive variety of life-form existing today,
the mystery of evolution is not yet completely solved and remains debatable.
The evidence obtained from ancient rocks suggest that the earth had
originated around 4-4.5 billion years ago from the solar nebula (Bowring,
Williams 1999; Dalrymple 2001; Wilde et al 2001) (Figure 1.1). After its
formation, the earth was a burning planet with very high temperature, and
its atmosphere contained hot gases and vapours of various elements.
Elements like carbon, hydrogen, nitrogen, oxygen did not exist in their free
state, but remained combined to each other or with other elements. The
absence of free oxygen and the ozone layer along with the abundance of
hydrogen and vapours generated from volcanic eruptions made the earth
very much different from how it is today. Gradually, the earth’s temperature
dropped, and the surface became a thin and solidified ‘crust’, with the center
being still hot and named ‘core’. The solid area separating core and crust is

known as ‘mantle’.
1.1.2. Formation of biomolecules essential for life:

After the temperature of earth crust dropped down, chemical changes lead to
the formation of larger biomolecules from preexisting smaller ones. This
includes the formation of simple carbohydrates (monosaccharides),
aldehydes, simple fatty acids, glycerol and amino acids. These simple
biomolecules then accumulated, reacted and aggregated to form more
complex organic compounds including disaccharides, polysaccharides,

polypeptides, proteins, fats, purines and pyrimidines. The formation of
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nucleic acids was the first big step towards the origin of living beings. The
presence of RNA as genetic material in retroviruses suggests that RNA was
the first genetic material. In the course of evolution, DNA became the

genetic material containing all the genetic information of an organism. Such

2 Ma:
First Hominins

230-66 Ma: 4550 Ma:
Non-avian dinosaurs Formation of the Earth
> Hominins
| [\ammals
c. 380 Ma: Land plants

Animals
Multicellular life

Eukanyotes e
c. 530 Ma: Prokaryotes S @rmation of the Moon

Cambrian explosion

750-635 Ma:
Two Snowball Earths

First vertebrate land animals

c. 4000 Ma: End of the
Late Heavy Bombardment;
first life

c. 3200 Ma
Earliest start
of Photosynthesis

c. 2300 Ma
Atmosphere becomes oxygen-rich;
first Snowball Earth

Figure 1.1: Major events in the history of the Earth represented in the
Geological time scale [Adapted from Wikipedia
(https://en.wikipedia.org/wiki/Geologic time scale)].

information gets translated into proteins that perform all the basic need of
the cells. However, the primitive cells were dependent on chemicals to
obtain energy and known as Chemoheterotrophs. The abundance of
chemotrophs leads to a subsequent decrease in the organic energy source.
Thus some of the cells became specialized and developed the ability to
photosynthesis (Photoautotrophs). From anaerobic photoautotrophs arose

the ancestor of modern plants (Aerobic photoautotrophs). Photosynthesis by
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aerobic photoautotrophs leads to the generation of free oxygen molecules in

the earth’s environment.
1.2. Cells and the Genetic material:
1.2.1. Cells and Cellular organelle:

Cells are the smallest units of life composed of different cellular organelle
enclosed in a selectively permeable ‘Plasma membrane’. The cells are capable
of dividing themselves, leading to the formation of daughter cells. The
enclosed cellular organelles perform all the basic life processes required for
the survival of the cell. The formation of the first living cells was the first
sign of life on the earth. These cells eventually gave rise to two types of
unicellular organisms- Monera, organisms with cells lacking a distinct
nucleus and Protista, representing organisms having a distinct nucleus.
Monera became diversified to form prokaryotes while protista became
evolved to form eukaryotes. Prokaryotes are unicellular, representing the two
domains of life: Bacteria and Archea. Eukaryotes represent a wide variety of
organismes, starting from the unicellular protozoans like Amoeba to the most
complex multicellular organisms like Humans. Thus, the process of evolution
is very complicated, as suggested by the existence of simple unicellular

prokaryotes to multicellular plants and animals.

Among the cellular organelle, the largest and most important one is the
nucleus. Nucleus contains the genetic material of an organism and is
responsible for the characteristic features of the cell. The genetic material
become transferred to the daughter cells during cell division and hence, the
daughter cells resemble the characteristic features of its parents. Although,
RNA is considered the first biomolecule that evolved as genetic material, and

still plays the same role in some retroviruses, DNA serves as the genetic
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materials in both prokaryotes and eukaryotes. The DNA contains all the

genetic information of a cell and has the capability of self-replication.

Regions on DNA (known as genes) serves as a template to ‘transcribe’

messenger RNAs (mRNA) containing the desired information carried by the

DNA. The mRNA gets ‘translated’ into proteins that perform the function of

the region of DNA.

1.2.2. The structure of DNA:

The structure of a DNA was revealed by James Watson and Francis Crick in

1953, and confirmed with
the X-ray crystallographic
analyses of Rosalind
Franklin, consequently
leading to the 1962 Nobel
Prize in Physiology or
Medicine to Watson, Crick
and Maurice Wilkins. Their
study revealed that the DNA
is a polymer composed of
monomeric units known as
nucleotides comprising a
nitrogenous base, a pentose
(deoxyribose) sugar, and a
phosphate molecule. There
are four types of nucleotides
classified on the basis of the

nitrogenous bases:

3' 5'

)/ hydrogen bond
HH \‘

base

sugar—phosphate
backbone

1 helical turn = 34 A = ~10.5 base pairs

@ A
4 - G
i G— c
3 5' T
| |
20 A (2 nm)

Figure 1.2: The DNA double helix (Adapted
from Watson et al. Molecular Biology of the
gene, 7™ edition)
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Adenine(A), Guanine(G), Thymine(T) and Cytosine(C). A and G are known as
Purines (Pu), whereas T and C are known as Pyrimidines (Py). The structure of
DNA is a double-stranded helix of 34 Angstrom (A) or 3.4nm pitch and 20A
(2 nm) diameter. A DNA molecule comprises two antiparallel strands made
up of nucleotides where the sugar and phosphate form the backbone of each
strand via an ester linkage (phosphodiester bond), and nitrogenous bases are
arranged in a staircase-like fashion inside the double helix (Figure 1.2). Both
ends of a DNA contain a free 5’ and 3’ end in their terminal sugar residues.
The hydrogen bonds between the nitrogenous bases of these two strands
stabilize the double helix structure. Among the bases, A always pairs with T
and G always pairs with C with two and three hydrogen bonds, respectively.
Thus, a DNA typically contains an equal amount of Pu (A+G) and Py (T+C), a
phenomenon known as Chargaff’s rule, named after Austrian chemist Erwin

Chargaff (Chargaff, Lipshitz, Green 1952).

B At the simplest level, chromatin DNA double helix
is a double-stranded helical —~
structure of DNA.

2 nm
W
DNA is complexed [E) tach nucleosome consists of I3 A chromatosome consists
with histones to eight histone proteins around of a nucleosome plus the
form nucleosomes which the DNA wraps 1.65 times H1 histone

Histone H1
/

Nucleosome core of —774
eight histone molecules
— 11 nm

-

3 ...that forms loops averaging

300 nm in length. Chromatosome

.//7'

B The nucleosomes fold up to
produce a 30-nm fiber

300 nm
o~

30 nm
N
[EB The 300-nm fibers are
compressed and folded to =" EBTigh : -
[ " i} ght coiling of the 250-nm
250 nm)rvl}l(de fiber produce a 250-nm-wide fiber. fiber produces the chromatid

\'\ [ of a chromosome

700 nm ! k " ) =7 1400 nm

Figure 1.3: The packaging of chromatin into higher levels of organization to
form the complex structure of chromosome (Adapted from Benjamin A.
Pierce, Genetics: A conceptual approach, Fourth Edition).
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However, DNA is a very long molecule as it carries all the genetic information
of an organism. The human DNA totals to a length of about 3 meters, which
is huge when compared to the diameter of the cell, which measure up to a
maximum value of Imm in ovum, the largest cell of the human body.
However, the DNA fits inside the nucleus in a very condensed manner with
the help of many proteins which ‘pack’ the less condensed DNA into more
condensed structure, the chromosomes. The DNA packaging involves histone
proteins, which are basic in nature and forms a stable octameric core
surrounded by the 146bp of double-stranded DNA. The nucleosomes
eventually form higher order structures and finally forms the chromosome
(Figure 1.3) The presence of nucleosome is not only important for efficient

packaging of DNA, but it also helps to regulate gene expression.
1.3. From Genotype to Phenotype:
1.3.1. Genes and Genomes:

Gene is the molecular unit of heredity located in a particular region or ‘locus’
on the DNA or chromosome and governs a particular characteristic of an
organism. The number of genes varies greatly among organisms, ranging
from as few as ~500 in the Mycoplasma genitalium (Fraser et al. 1995) to
~23000 in humans. The record of highest number of genes is held by the
near-microscopic freshwater crustacean Daphnia pulex (water flea) which
contains ~31000 genes (Colbourne et al. 2011). The complete set of genes
present in an organism is known as the ‘genome’ of that organism.
Fundamentally, all the cells in an organism’s body are identical in terms of
their number of genes. Genes determine the genotype of an organism and
govern the phenotypic characters (traits) of that organism. The genes within

an organism come from its parents, by a process known as ‘inheritance’.
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1.3.2. Alleles, phenotypes, and genotypes:

A gene may have different forms, known as ‘alleles’ that are responsible for
the variation of a particular phenotypic trait across different individuals of
the same species. These alleles are situated in the same locus in homologous
chromosomes, and thus, a diploid organism having two sets of identical
chromosome can possess maximum two variants of a gene. For example, let’s
recapitulate the famous work by Sir Gregor Johan Mendel in pea plant for
one gene two allele character (Monohybrid). Here, ‘T’ is the allele that
encodes products responsible for regulating the length of the plant (TT=
Tall). However, its mutant (recessive) allele ‘t’ is not capable of doing so, and
leads to the short height of plants having only ‘t’ alleles in both their
homologous chromosomes (tt= dwarf). However, the presence of a single ‘T’
allele is enough for the normal plant phenotype, as seen in the plants having
genotype ‘Tt" shows characters like ‘TT’ genotype, that is they are
phenotypically ‘tall’ plants. Therefore both TT and Tt are phenotypically
same, but genotypically different, as only one ‘T’ allele is responsible for
performing all functions that are responsible for ‘Tall’ phenotype, and is
considered as a dominant allele. However, a population (defined by the
number of conspecific individuals at a spatiotemporal interval) comprising
diploid species may possess more than one allele, a phenomenon known as
‘Multiple allelism’, with only a maximum of two variants of a gene being
present in an individual’s genome. One such example includes the ABO-Blood
group system, where three different alleles are present in a population that
determines the blood type. These are A, B, and O, that are surface antigens
present on the surface of human red-blood corpuscles. Here, both A and B
are individually dominant over O and are codominant with each other (Figure

1.4).
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However, the genotype is not the sole determinant of the phenotypic traits,
as most of the traits are governed by gene-gene and gene-environment
interactions (Via, Lande 1985). But genes play the most important role in
regulating and maintaining the cellular functions. Moreover, the function of a
gene can be modified by the accumulation of mutations that changes the
nucleotide sequences of the gene, which may prove neutral, beneficial or

even detrimental to the organism, as we will see later in this chapter.

Group A Group B Group AB Group O
Red blood
cell type
V) N/

Antibodies > ( - > { - A </ - </C
X N~ /A N— /N
in Plasma ’/\/ | A0 ’</ i~ A4

Anti-B Anti-A None Anti-A and Anti-B
Antigens in
Red Blood ? t A
Cell A antigen B antigen Aand B None

antigens

Figure 1.4: The ABO blood group system in humans (Adapted from
https://commons.wikimedia.org/wiki/File: ABO_blood type.svg)

1.3.3. From Genes to Proteins- The Central Dogma of Molecular Biology:

As stated earlier, genes determine the phenotypic trait of a cell or an
organism. For example, in a normal human being, all the cells contain same
type and amount of genetic material, starting from the epithelial cells to the
tubular muscle fibers and the shapeless white blood cells. However, they
differ in terms of the genes that are ‘expressed’ within that particular cell

type, a feature that makes those cells ‘unique’ and different from each other.
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Each cell divides to give rise to daughter cells, genetically identical to the
parent. Thus, the whole genetic material of a parental cell must be multiplied
and shared equally among the daughter cells so that they contain the same
amount of genetic material as their parent. The genetic material or DNA is
capable of making copies of itself by the help of certain proteins, among
which the most important ones are DNA polymerase, Helicase, Single-strand
binding proteins, and DNA topoisomerase. This process is known as DNA
replication, and it leads to the formation of two double-stranded DNA
molecules from one such DNA after each round. However, the message of
DNA is transferred from nucleus to cytoplasm via a cellular messenger
known as mRNA (messenger RNA), which is transcribed from DNA with the
help of DNA-dependent RNA-polymerases and other enzymes, by a process
known as ‘transcription’. The mRNAs carry all the genetic information from
the DNA and ‘translates’ the same in the form of polypeptides or proteins.
Thus, the DNA makes DNA, as well as RNA via the process of replication and
transcription, respectively; and the RNA produces proteins via the process of
translation, a phenomenon known as the Central dogma of molecular biology
(Figure 1.5). Stated by Francis Crick in 1958, the central dogma describes the

direction of flow of genetic information within a cell(Crick 1970):

Replication

DNA | Transcription RNA | Translation Protein

Figure 1.5: The central dogma of Molecular Biology

10
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The central dogma also indicates
that as the DNA is the most vital
molecule and is central to all cellular

functions, it should be maintained in

SIS INA=ENehE O O >3

a more protected state and the DHU

message of DNA is ‘transcribed’ in
the form of RNA (messenger RNA).

The formation of polypeptides or

proteins is more complex, as it Q
anticodon
involves decoding of the message mRNA 3 UCGE |5
|
codon
carried by mRNA via ribosomes, with Figure 1.6: Cloverleaf

the help of transfer RNAs (tRNAs) representation of tRNA secondary
structure. y= pseudouridine, T=

that transfer the information from | ribothymidine, DHU= 5,6-
dihydrouridine, I=inosine, m1G= 1-
methylguanosine, m2G= N,N-
nucleotide sequence of the mRNA | dimethylguanosine, — mll=  1-

methylinosine. (Adapted from
determines the amino acid sequence | Wwausson et al., Molecular Biology of

the Gene, 7" Edition).

nucleic acids to amino acids. The

of a protein by proper tRNA-mRNA

codon-anticodon base pairing, where codon represents trinucleotide
sequence on the mRNA and anticodon sequence is present in the anticodon

arm of tRNA (Figure 1.6).
1.4. Mutations:

Mutations are changes acquired in the DNA sequence that serves as the raw
materials of genetic variation and thus, in an important process of evolution.
The term ‘mutation’ was coined by Hugo deVries, who represented it as large,
sudden and spontaneous inheritable changes that occur suddenly in

naturally reproducing populations. More recent definition of mutation
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considers it as any hereditary change in the genetic makeup of an individual
other than that which may be caused by the simple recombination of genes.
Such changes lead to the formations of different variants of a gene, known as
alleles. Mutations may occur at the level of gene structure or composition
(referred to as gene mutations or point mutations), at the chromosomal level
resulting in an alteration in chromosome structure or number (known as
chromosomal mutations). Additionally, mutations may occur at somatic
levels, affecting one or more tissues in the body and limited to an individual;
or at germ-line tissues, appearing in the gametes and propagating to the
next generation. However, only the germ-line mutations are inherited and
play crucial roles in evolution. Therefore in this thesis, the term ‘mutation’
refers to the germ-line mutations. Although mutations bring changes in the
gene structure, not all the mutations become expressed and showed up in
the individual. Dominant mutations are expressed in the mutant organism(s),
whereas recessive mutations may remain hidden for generations. Most of the
mutations are recessive, a fraction of such mutations are even lethal, and
becomes fatal for the organisms homozygous for the mutant allele.
Mutations are classified according to their mutagenic effect on proteins’
structure, function significance of mutation and the extent of mutation

(Table 1.1).

1.5. Gene Duplication:

It was in 1936 when Calvin Blackman Bridges reported that duplication of a
chromosomal segment leads to a severe reduction of eye-size in Drosophila
melanogaster (Bridges 1936). Subsequent studies aiming towards the
evolutionary significance of gene duplication has drawn much attention

(Stephens 1951; Ohno, Wolf, Atkin 1968; Nei 1969). In 1951, S.G. Stephens
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comprehended the significance of gene duplication in evolution, as an
increment of genomic loci, to produce more gene required for increasing
complexity in the course of evolution. He hypothesized that if mutations are
required to develop novel gene functions, it is likely to hamper pre-existing
ones, and gene duplication provides a shield to this, by preserving both the
novel and ancestral forms and functions of the genes (Stephens 1951).
Afterwards, in 1970, Ohno postulated that gene duplication is the major

driving factor that brings about genome evolution.

Fundamentally, gene duplication is a genetic mutation that leads to an
increase in the genetic material of an organism by doubling of gene(s). With
many of the deformities associated with such type of genetic mutation
(Dickerson, Robertson 2012; Veitia, Bottani, Birchler 2013; Malaguti, Singh,
Isambert 2014; McLysaght et al. 2014), gene duplication is the major driving
force of genome and organism evolution as it supplies raw genetic materials
for structural modifications like mutation, leading to functional
modifications and the origin of new functions. The possible modes of
duplication include: 1. unequal crossing over, which happens during
chromosomal rearrangement, 2. Retrotransposition; where the messenger
RNA of a gene gets reverse transcribed, and the complementary DNA is
integrated back into the genome; and 3. Polyploidization, where the whole
set of chromosomes get duplicated. The evolutionary time scale depicts that
all life forms present today were originated from simplest unicellular
organisms upon acquiring further complexities. Such complexities include
development of multicellularity, tissue-level organization, complex
metamorphosis and embryogenesis, regulated cellular processes and
transition from asexual to sexual reproduction. However, such transition is

never easy, as it requires many biological factors and cellular machinery, of
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Table 1.1: Types of Mutations

Classification Types of Description
of mutations mutation
Based on the Nonsense Point mutation leading to premature stop codon in
effects of Mutations | the mRNA
mutations on
proteins’ e.g., UGG > UAG
structure trp > STOP
Missense Point mutation leading to the formation of a different
Mutations | amino acid leading to altered protein product.
Effects may be minor to drastic, or even lethal.
e.g., GAG > GUG
glu > val
Neutral Point mutation resulting different, but chemically
mutations similar amino acid.
Leads to little or no harmful effect in the resultant
protein.
e.g., AAA > AGA
lys > arg (Both are basic in nature)
Silent Point mutations leading to no change in the amino
mutations | acid sequence of the encoded protein.
e.g., UUG > CUG
leu > leu
Frameshift | Mutations leading to the change in the reading frame.
mutations

Results from insertions/deletions that are not

multiples of three nucleotides.
Leads to the formation of a completely different
Protein product.

The earlier in the DNA sequence the mutation occurs,
the encoded proteins become more altered.

e.g.,
AUG AAC CUA CUG... > AUG AAG CCU ACUG...
met - asn - leu - leu...> met - lys -pro - thr...
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Table 1.1: Types of Mutations (continued)

Classification Types of Description
of mutations mutation
Based on the Loss of Mutations resulting in gene product having less or
functional function no function.
significance of mutation
mutations
Gain of Mutations leading to the gain of new functions.
function
mutations
Dominant Mutations leading to the production of gene
negative products acting antagonistically to the wild-type
mutations gene product
Lethal Mutations resulting in the death of the organisms
mutations carrying the mutant copy of the gene.
Reversion/ Mutation that restores the wild-type function in a
Back previously mutated gene.
mutation

Based on the
extent of
mutations

Small-scale
mutations

Mutations affecting one or a few nucleotides.
Are of three types-

i) Point mutations
ii) Insertions
iii) Deletions.

Large-scale
mutations

Mutations leading to a change in the chromosomal
structure.

Are of two types-

i) Duplications (or amplifications)- creates multiple
copies of gene(s) or chromosomal regions,
increasing the products of the gene(s) located
within the region.

ii) Deletions- Removal of chromosomal regions,
leading to loss of the genes located within those
regions.
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which proteins play an important part. Proteins are nitrogenous biomolecule
composed of one or more long chains of amino acid residues and are
encoded by genes located in the chromosome(s). The number of genes in an
organism may vary from a few hundred genes in some bacteria to more
than 20000 genes in humans. Therefore, such a huge variation in the number
of genes corresponds to the huge variation in the complexity of these
organisms. However, such an increase in gene number requires an efficient
evolutionary mechanism that helps in generating new genes that are retained
in the course of evolution. Gene duplication supplies raw genetic materials
required for functional innovation that are key to evolution. Additionally,
large evolutionary transitions requiring many genes are also achieved by
large-scale gene duplications, that leads to the duplication of many genes,

chromosomal segments, whole chromosomes and even the whole-genome.
1.5.1. The Contribution of gene duplication in Evolution:

Susumu Ohno was among the first evolutionary biologist to explain the
‘Evolution by gene duplication’ hypothesis(Ohno, Wolf, Atkin 1968; Ohno
1970). He also postulated the possible outcomes of gene duplication, stating
that in most of the cases gene duplication are unfavorable as it leads to the
generation of ‘useless duplicates’ that leads to nonfunctionalization, or
functional disruption (Ohno 1970). However, a vast number of duplicated
genes throughout all three domains of life indicate that such duplicates may
have been retained. Such retention of duplicates are favored in the
circumstances like increased gene dosage advantage, where the subsequent
increase in gene product is favorable for the organism (Innan, Kondrashov
2010). In the long term, these duplicated gene copies may serve as backup

copies or diversify to acquire novel function [Neofunctionalization] or to
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partition ancestral functions after complementary degenerative mutations
[Subfunctionalization] (Clark 1994; Force et al. 1999). Whereas the sub- and
neofunctionalization helps in functional specialization and generation of
novel functions, respectively, and helps in genome evolution, the duplicated
genes that remain structurally and functionally similar helps to increase
genetic robustness against deleterious mutations (Gu et al. 2003; Liang, Li
2009). However, as proteins work together to perform certain biological
function(s), and are involved in a protein-protein interaction (PPI) network
that serves all of their functions. Thus, from the perspective of PPI-network,
gene duplication may not be favorable, as it increases the amount of encoded
protein product (dosage) for that protein only. This creates a disparity in the
protein interaction network, as the interacting partners of the concerned
gene produces normal dosage of their protein products. Such disparity is
known as ‘dosage imbalance’ and is dependent on the connectivity of a
protein in the PPI network, known as the centrality-lethality rule (Jeong et al.
2001). Thus, in a PPI network, the relative dosage of all of its participants
should be maintained to accomplish optimum functionality. However, in
higher organisms like humans, gene dosage is strictly regulated by the
presence of efficient dosage regulatory mechanisms (Li, Musso, Zhang 2008).
The presence of dosage-balanced duplicated copies, therefore, is
advantageous, as it provides shield against deleterious mutations without

any disparity in the protein interaction network.
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1.6. Origin of the proposal:

Gene duplication provides raw genetic materials for genome innovation and
evolution(Stephens 1951; Ohno, Wolf, Atkin 1968; Ohno 1970; Zhang 2003).
Although every gene has its own function in an organism’s life, there are
genes essential for its survival and reproduction. These genes, known as
essential genes, causes organismal sterility and/or lethality upon their
deletion (He, Zhang 2006b; Liao, Zhang 2007; Makino, Hokamp, McLysaght
2009). Essential genes are associated with essential biological functions and
are detected by analyzing loss of function mutations. However, there are
many genes considered as nonessential despite performing such vital
functions, due to the functional restoration in loss of function mutants by
their duplicated copies. Therefore, the duplication of vital genes provides a
selective advantage due to the increased robustness against deleterious
mutations. However, such a duplication event may not be favorable, as
proteins work together to perform certain biological functions, and
duplication increases the amount of encoded protein product (dosage) for
that protein only (He, Zhang 2006b). This creates a stoichiometric imbalance
within the protein interaction network, as the interacting partners of the
concerned gene maintain their normal protein dosage. Such disparity, known
as ‘dosage imbalance’ is even more pronounced for essential genes, as they
are highly connected (hub-like) in protein-protein interaction network (He,
Zhang 2006a). Dosage imbalance is one of the main reasons of lower
duplicability of essential genes in the lower unicellular eukaryotes (He, Zhang
2006b), largely due to the lack of dosage regulatory mechanisms (Springer,
Weissman, Kirschner 2010). However, in higher organisms like humans, gene
dosage is strictly regulated by the presence of efficient dosage regulatory

mechanisms (Li, Musso, Zhang 2008). The presence of dosage-balanced

18



Chapter 1 Introduction

duplicated copies, therefore, is advantageous, as it provides a shield against
deleterious mutations without any dosage imbalance in the protein

interaction network.

Additionally, there is also evidence of gene duplication while keeping the
dosage of protein interaction network in balance. The extent of gene
duplication ranges from Small Scale Duplication (SSD; usually involving one
or a few gene) to large-scale duplication that may comprise the duplication of
the whole genome (Whole Genome Duplication or WGD). These two extents
of duplication affect their associated protein-interaction network
differentially (Lynch, Conery 2000; Freeling, Thomas 2006; Hakes et al. 2007,
Makino, McLysaght 2010; Fares et al. 2013). In WGD, all the proteins within a
PPI network become duplicated at the same time, thus resulting in a stable
stoichiometric balance of the participant proteins even after the duplication.
In SSDs, however, the duplicated gene(s) form more protein than the non-
duplicated participants of the PPI network, creating an imbalance in the
whole network. SSD occurs at any time and the dupicates formed by it are
retained in the course of evolution, upon favorable circumstances. WGDs, in
constrast, are much rarer in their occurrence in eukaryotes, being most
common and widely studied in the evolution of plant genome (Stebbins 1971;
Blanc et al. 2000; Wendel 2000; Adams, Wendel 2005a). An ancient whole-
genome duplication in the genome of the simplest unicellular eukaryote
yeast (Wolfe, Shields 1997; Dujon et al. 2004; Kellis, Birren, Lander 2004)
leads to the comparison of the SSDs and WGDs. Such a comparison has
revealed various differences (Guan, Dunham, Troyanskaya 2007; Hakes et al.
2007; Fares et al. 2013). Yeast WGD pairs are functionally more similar to
each other than SSD-pairs, which is independent of their sequence similarity

(Guan, Dunham, Troyanskaya 2007; Hakes et al. 2007). Additionally, SSDs
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also diverge more at their subcellular localization than the WGDs(Fares et al
2013). Also, yeast SSD genes were found to contain a higher proportion of
essential genes than WGD genes (Guan, Dunham, Troyanskaya 2007; Hakes et
al. 2007). Additionally, there are concrete evidence of two rounds of whole-
genome duplication during the evolution of early vertebrates (Zhou, Cheng,
Tiersch 2001; Dehal, Boore 2005; Brunet et al. 2006a). Such a genome
duplication provided the raw materials for such an extensive species
diversity of vertebrates (Zhou, Cheng, Tiersch 2001; Dehal, Boore 2005) and
hence, is an important process in vertebrate evolution (Allendorf, Thorgaard
1984; Dehal, Boore 2005). The accumulation of human genomic and
proteomic data plays an important role for in-depth analysis of human
genes. Based on these data and the studies mentioned above, my proposed
work aims to explore the role of human duplicated genes in human genome

evolution under the following objectives:

Objectives:

e Determining the proportions of essential genes retained as singletons
and as duplicates in humans.

e Interpretation of the functional role and evolutionary significance of
duplicated gene copies by comprehensive analysis using human
essential duplicated genes.

e Exploring differences in evolutionary and genomic attributes in
human duplicated genes arising from small-scale duplication with
those originating from whole-genome duplication.

e Investigating the fate of small-scale and whole genome duplicates to
explore the long-term evolutionary consequences of vertebrate whole

genome duplication.
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e Understanding the evolutionary rate differences between human
small-scale and whole genome duplicates.

e Estimation of the functions of human whole-genome duplicate genes
and evaluation of the importance of such functions to understand

their importance in human genome.

1.7. Thesis Organization:

The whole work was carried out in Prof. Tapash Chandra Ghosh’s laboratory
at the Bioinformatics Centre, Bose Institute, Kolkata, India. This thesis
integrates my published works during my Ph.D. tenure. The thesis starts with
Chapter 1: Introduction, explaining the background to the study; followed
by the Chapter 2: Resources and methodology, summarizing a clear
description of the databases, materials and protocols used for the whole
work. Then the individual chapters representing specific topics under the

study are described.

Chapter 3 explores the duplication pattern of essential genes in human and
mouse. Here, we have observed that the human duplicated genes contain a
higher proportion of essential genes, whereas in mouse, a higher proportion
of essential genes are retained as singletons. Our cross-species comparison
comprising mouse and human essential duplicate genes reveal that human
essential duplicates are functionally less diverged and evolutionarily more
conserved than that in mouse, revealing their ability to serve as backup
copies to increase robustness against gene-deletion. We have also observed a
higher enrichment in micro-RNA target sites among the paralogs of human

essential genes than the mouse counterparts, representing the role of micro-
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RNAs in maintaining the gene dosage of backed up duplicated copies of

human essential genes.

Chapter 4 aims to reveal the importance of whole genome duplication in
human evolution. Here, we compared the human small-scale duplicates (SSD)
with their whole-genome duplicates (WGD). The latter class of duplicated
genes had originated during the genome duplication occurred early in
vertebrate evolution and thus our study aims to explore the long-term
evolutionary fate of these duplicates. We observed a lower functional
similarity, lower subcellular colocalization and lower coexpression among
the WGD pairs, indicating that these duplicates tend to diverge more in their
function and expression. Further, our detailed functional analysis suggests
that the WGD duplicates are associated with more variety of functions and

functions that are crucial for the survival of humans.

Chapter 5 gives a general summary of our work and conclusion from the

above studies.

The Thesis ends with the literatures that have been followed and cited for
the above-mentioned works and the reprints of our works relevant to the

thesis followed by those that are not related to the thesis.
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Chapter 2

Resources and Methodology

/ “A theory can be proved by experiment; but no path leads from \

experiment to the birth of a theory.”

— Albert Einstein (1976)

With the advent of new genomic tools and accumulation of genomic
data from large-scale genomic experiments and a vast number
individual studies, genome-scale high throughput data analysis became
feasible. This leads to large-scale genomic analysis in a wide-range of
organisms, rather than focusing in a particular gene group or species,
resulting in the extraction of meaningful biological information. It also
helps in the comparative genomic analysis in similar or diverse species
to study the similarities or differences in their evolutionary genomic
properties. Additionally, the development of powerful statistical tools
have made the validation of the hypothesis that are put forward in a

more powerful and rigorous way.

- /
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2.1. Gene Essentiality:

In every organism, there are a number of genes crucial for the purpose of its
survival and reproduction and is indispensable for its genome. These genes
are collectively known as essential genes. The essential genes are thus
indispensable to the viability of the organism (Seringhaus et al. 2006; Hwang
et al. 2009; Wang, Peng, Wu 2013), and are associated with basic cellular and
molecular functions, thereby representing the minimal set of genes required
for cellular survival (Juhas, Eberl, Glass 2011; Yang et al 2014). The
identification of essential genes has been a major goal in genomic analysis
and is usually done by disrupting the function of the gene by experimental
approaches involving gene-knockouts (Giaever et al 2002), conditional
knockout (Roemer et al. 2003), gene-knockdown by RNA-interference (RNAi)
(Kamath et al. 2003; Cullen, Arndt 2005; Silva et al. 2008; Chen, Zhang, Long
2010), and gene-trap mutagenesis (Blomen et al. 2015) etc. For our study, the
essential genes in human and mouse genome were retrieved from the Online
Gene Essentiality database (OGEE) (http://ogeedb.embl.de/)(Chen et al
2012b) which estimates gene essentiality based on si-RNA mediated gene-
knockdown fitness effect in humans, and gene-knockout fitness effect in
humans. OGEE contains 1528 (7.38%) human essential genes based on
genome-wide experiments data on 20,684 genes and 2618 (43.36%) mouse

essential genes based on genome-wide experiment on 6038 genes.
2.2. Homologous genes- Orthologs, Paralogs and Ohnologs:

Homologous genes refer to the genes originated from a common ancestor
and are identified by their structural and functional similarities. There are
two types of homologous genes- Orthologs are defined as homologs

originated as a result of speciation and thus refer to the homologous genes
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in different species. In contrast, Paralogs are homologs originated as a result
of gene duplication within species and thus refer to homologous genes
within the same species. Ohnologs however, refer to the duplicated genes
originated form whole-genome duplication events and named after the
renowned Evolutionary Biologist, Susumu Ohno (1928-2000), who first
proposed the two rounds of WGDs in the genome of vertebrate ancestor.
Thus, ohnologs simply refer to the paralogous genes originated from whole-

genome duplication event (Figure 2.1). For our studies, we obtained the

<+—— Universal Common Ancestor

Speciation event leading
to the formation of —_—
Species A and B

Duplication event C e ™ Whole Genome

s N
within Species A SPECIESB Duplication event
. /) J

Ohnologs
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\ Paralogs
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Orthologs

Figure 2.1: Orthologs, Paralogs and Ohnologs.

orthologous and paralogous genes from the biomart interface of Ensembl
genome browser (Cunningham et al 2014; Flicek et al 2014)

(http://www.ensembl.org/biomart/martview). Ohnologs in the human

genome were obtained from the database ‘OHNOLOGS, a repository of genes
retained from whole genome duplications in the vertebrate genomes’

(http://ohnologs.curie.fr/)(Singh, Arora, Isambert 2015a), along with a

previously published data of Makino and McLysaght (Makino, McLysaght
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2010). In both the datasets, human ohnologs and families were constructed

using a quantitative multiple-genome comparative approach.
2.3. Protein Evolutionary Rate:

Since the discovery of the amino acid sequences of homologous proteins in
the 1950s and 1960s, the rate of protein sequence evolution has been of
enduring interest to evolutionary biologists (Zuckerkandl, Pauling 1965;
Kimura 1968). The protein evolutionary rate refers to the changes acquired
over time in a protein’s sequence. Such changes play an important role in
protein evolution and are used to reconstruct the evolutionary history of
these species. In practice, the measurement of protein evolutionary rate
involves the sequence alignment of the DNA encoding that protein and its
orthologous DNA sequence from ancestral species. After this alignment, the
nucleotide substitution is measured. The nucleotide substitutions are
subdivided into two parts- (1) Synonymous, that does not bring any change
to the amino acid of its encoded protein; and (2) Nonsynonymous, that
changes the amino acid of its encoded protein. Kimura used the ratio (o) of
synonymous substitution per synonymous sites (dS) and the non
synonymous substitution per nonsynonymous sites (dN) as the evolutionary
rate of the protein (Kimura 1968). This ratio (») is also used to measure the
selection pressure, where o=1 signifies no or neutral selection, w<1 denotes
negative or purifying selection and w>1 indicates positive or diversifying
selection. In our study, we obtained the dN and dS of mouse and human
genes from the Ensembl biomart (Cunningham et al. 2014; Flicek et al. 2014)

and calculated the dN/dS ratio.

2.4. Pairwise comparison of gene functions:
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The functional similarity and functional divergence compares the function of
any of two or more genes and are opposite to each other. The functional
similarity refers to the proportion of functions that are shared among the
genes in concern, whether functional divergence calculates the proportion of
functions that are different between those genes. Both the values range from
0 to 1, and are calculated using the Gene Ontology terms of the genes in
concern. Gene Ontology (GO) uses GO-term classifications to describe gene
function, and relationships between these terms. It classifies the functions of

all genes in three aspects:

1. GO Molecular Function, associated with molecular activities of the gene

products.

2. GO Biological Process, dealing with the pathways and larger processes of

which the gene in concern takes part.

3. GO Cellular Component, describing the subcellular locations where gene

products are active.

The GO term ‘GO Cellular Component’ also has a very significant role, as it
describes the subcellular components in which the encoded protein(s) of a
gene is localized. Thus, it is widely used to study the similarity, and/or
divergence of two or more genes in their subcellular protein localization,
using the same set of formula used to calculate the functional similarity and

divergence, respectively. The formulae are as follows-
1. Bayesian data integration method:

2 x S(,j))
[GO terms(i) + GO terms(j)]

Functional Similarity (i,j) =

Where ‘7 and ‘j are duplicated pairs, ‘S (i,j) represents the Gene Ontology

terms shared between the duplicated pairs ‘7’ and ‘j’. The values range from 0
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to 1, where ‘0’ means lowest functional similarity (complete functional
divergence) and ‘1’ means highest functional similarity (No functional

divergence) (Table 2.1).

2. Czekanowski-Dice distance formula for functional distance (Baudot, Jacq,

Brun 2004)

Number of Terms (i)A Number of Terms (j)
Number of [Terms (i)u Terms (j)]+ Number of [Terms (i)NnTerms (j)]

Functional Distance (i, j) =

Here, i and j denote a gene and its paralogous gene within a species. Terms
() and Terms (j) are the lists of the GO terms for individual genes. ‘U’ and ‘"’
denotes the nonredundant and common GO id count, respectively, of the two
genes. ‘A’ is the symmetrical difference between the GO term sets of two
genes, i.e. ‘(U-N)’. The values range from 0 to 1, but here, ‘0’ means the
lowest functional distance (complete functional similarity) and ‘1’ means the

highest functional distance (No functional similarity) (Table 2.1).

Table 2.1. The calculation of functional similarity and functional distance

Gene Gene Gene 1 Gene 2 GO Common Nonredundant Functional Functional

1 2 GO ids ids GO ids GO ids Similarity Distance
i (Bayesian (Czekanowski-
i J G0O00001, GO00003, GO00003  GO00001, data Dice distance
G0O00002, GO00004, G000002, integration formula)
G0O00003.  GO00005, G0O00003, method)
G0O00006. G0O00004,
G0O00005,
GO00006.
COUNT 3 4 1 6 =(2x1)/(3+4) =5/(6+1)
=0.286 =0.714

2.5. Gene expression profile similarity:

Pearson Correlation Coefficient (r) was used to calculate the expression
profile similarity of two or more genes with their expression levels in several

different tissues (Liao and Zhang, 2006). For our analyses, we obtained the
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RNA-seq gene expression data of human from two databases- (1) Human
protein atlas Release 9 (http://www.proteinatlas.org/) and (2) EMBL-EBI
Expression Atlas (http://www.ebi.ac.uk/gxa). Both the databases provide
experimental RNA-seq gene expression data in human tissues. The Pearson
correlation coefficient used to determine the expression profile similarity
within the duplicated pairs —

NYij—CDE))
JINY 2= XDINE2 - )

Pearson correlation coefficient (r) =

Where ‘7 and ‘j are paralogous pairs, ‘N’ represents the total number of
tissues, Y ij’ is the sum of the products of paired expression signal
intensities, ‘Y,i’ sum of expression signal intensities for gene ‘7, ).j’ is the

sum of expression signal intensities for gene ‘j, ‘(¥ i?)’ is sum of squared
expression signal intensities of gene ‘7, ‘Y j?’ is sum of squared expression

signal intensities of gene ‘j’.
2.6. Micro-RNA target sites:

Micro-RNAs, as their name suggests, are small RNA molecules that do not
encode any protein. Instead, they regulate the gene expression by interfering
at the post-transcriptional level. The micro-RNAs are found mainly in plants,
animals, and some viruses, and are transcribed from the micro-RNA gene, by
the help of RNA polymerase II. The primary transcript of micro-RNA genes
undergoes several post-transcriptional modifications inside nucleus as well
as after its export to the cytosol via RAN-GTP mediated protein exportin, by

the nuclear and cytoplasmic exonucleases Drosha and Dicer, respectively.

A mature micro-RNA is single-stranded ~22 nucleotide molecule that
regulates the gene expression at the posttranscriptional level either by

repressing translation or by degrading its target mRNA. This phenomenon

29


http://www.proteinatlas.org/
http://www.ebi.ac.uk/gxa

Chapter 2 Resources and Methodology

requires complementary base-pairing of the messenger RNA and the seed

region of the microRNA.

For our study, we obtained the micro-RNA target sites of human and mouse
genes from the TargetScan database Release 6.2 (http://www.targetscan.org)
(Garcia et al. 2011) that predicts biological target sites of micro-RNAs present
in the mRNAs of a gene, by searching for the presence of conserved six-,
seven- and eight-mer sites in the mRNA matched to the seed region of micro-

RNA.
2.7. Protein Multifunctionality:

Proteins perform almost all the cellular functions within an organism.
However, they do not function alone. Instead, in most of the cases proteins
perform their functions by interacting with other proteins, known as their
interacting partners. Thus, a certain cellular function usually requires many
proteins. In other words, besides being assigned to perform highly
specialized functions, proteins usually perform many other functions and
become ‘multitasking’. Protein multifunctionality indicates the number of
functions to which a protein is associated. As the functions of a protein are
mediated by its domains, the number of domains in the structure of a
protein can be used as a proxy to measure the number of its functions.
Additionally, protein multifunctionality can be measured directly from its
functional annotation. This can be done by using the Gene Ontology (GO)
terms assigned to the genes and/or proteins. For example, using the unique
GO terms for the GO domain ‘biological function’ for a protein will reveal the
unique biological processes in which the protein takes part. For our study,
we obtained protein domains from Pfam (Finn et al. 2014) and Unique GO

Biological Process terms from the Ensembl Genome Browser (Flicek et al
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2014; Yates et al. 2016). We calculated protein multifunctionality by using

both the above-mentioned parameter.
2.8. Disease genes:

As we have seen earlier in Chapter 1, mutations on a gene may lead to
changes in gene function. Such changes are often lethal to the organism and
eliminated via purifying selection. However, there are consequences where a
mutation on a gene does not lead to lethality; instead it may lead to disease
formation. During the past few decades, researchers had attempted to
identify such human genes which may cause disease progression upon
mutations on them. For our analyses, we obtained the human disease genes
from the Human Gene Mutation Database (HGMD) (Stenson et al. 2012),
which contains both the Monogenic (Mendelian) and Polygenic (Complex)
disease genes and represent a comprehensive collection of germline

mutations in unclear genes associated with human inherited disease.
2.9. Developmental genes:

Genes associated with the embryonic or post-embryonic development of an
organism are known as developmental genes. These genes are usually
evolutionarily highly conserved in nature, shows variable expression patterns
in different stages of development, and their misregulation leads to
developmental defects. Examples include the homeobox (Hox) genes that
govern the body-plan of the embryo. In our study, we obtained the
developmental and non-developmental genes by using the gene-ontology
annotation for the GO domain biological process. Here, a gene is considered
‘developmental’ if they are associated with one of the two GO terms:

G0:0007275 (multicellular organismal development) and GO:0030154 (cell
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differentiation) or their daughter terms, and the other genes were considered

‘non-developmental’ (Makino, Hokamp, McLysaght 2009).
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Chapter 3

The complex association of gene duplication and
gene essentiality: insights from human and mouse

genome

gne duplication is among one of the major driving forces shaping genonh

and organism evolution. Duplication creates multiple copies of a gene and is

influenced by intrinsic properties of the gene. One such property is gene
essentiality, depicting the functional importance of a gene and is measured
by the fitness cost of the gene upon its deletion. Comparison of the fraction
of essential genes among mouse and human revealed that the essential
genes avoid duplication in mouse but not in humans. This study explores the
reasons behind such discrimination in gene essentiality in the context of
gene duplication by cross-species comparison of mouse and human
genomes. In-depth functional analyses suggests that the essential human
duplicated genes are functionally more redundant than that in mouse. The
paralogs of mouse essential duplicates are more often pseudogenized than
that of humans. Additionally, such functionally redundant duplicates are
under stringent dosage regulation in humans. We also observed a higher
evolutionary conservation in the paralogs of human essential genes than that
in mouse. Together, our results demonstrate that the human essential genes
are retained as duplicates to serve as backup copies that are under stringent
dosage regulation and may shield themselves from loss-of-function

Qltations. /

Keywords: Gene essentiality, Gene duplication, Functional divergence,

Evolutionary conservation, dosage imbalance.

Adapted from Acharya et al., 2015, PLoS ONE 10(3): 0120784
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3.1. Introduction

Gene duplication is one of the key factor regulating genome and organism
evolution (Stephens 1951; Ohno, Wolf, Atkin 1968; Ohno 1970; Zhang 2003).
Gene duplication supply raw genetic materials for structural and functional
innovation and also conserves the parental function. Although duplication is
not always advantageous, as after duplication most of the gene copies
subsequently become nonfunctionalized or pseudogenized in the genome
(Ohno 1970), it has many implications in the life of the organism. For
example, the duplicates may be preserved in the genome for their immediate
benefit like requirement of an increased gene dosage (Innan, Kondrashov
2010) or may serve as backup copies to restore the function of the parent
copy upon the accumulation of loss-of-function mutation on the latter (Gu
et al. 2003; Liang, Li 2009). The duplicated copy(s) may also undergo
structural and functional modifications to take up new functions, an event
known as neofunctionalization (Ohno 1970), or they may share their
ancestral functions upon accumulating complementary degenerative
mutations, a phenomenon known as subfunctionalization (Clark 1994; Lynch,
Force 2000). The pattern of gene duplication varies between species as well
as across different gene groups within the same species. Several factors
contributing gene duplication have been observed till date in different
organisms. Examples include protein connectivity and protein interaction
network (Makino, Suzuki, Gojobori 2006; Liang, Li 2007; D'Antonio, Ciccarelli
2011), protein complexity (Yang, Lusk, Li 2003; Bhattacharya, Ghosh 2010),
gene retention and sequence divergence (Waterhouse, Zdobnov, Kriventseva
2011), gene dosage balance (Makino, McLysaght 2010) and nevertheless, gene
essentiality (He, Zhang 2006b; Liao, Zhang 2007; Makino, Hokamp, McLysaght

2009).
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Essential genes are indispensable to an organism, and their deletion causes
severe fitness reduction like sterility or lethality (Liao, Scott, Zhang 2006).
Such genes are mostly associated with important biological or molecular
functions. However, many genes performing such ‘essential’ functions are
considered to be nonessential, as some other genes with similar or identical
functions and expression compensate their deletion (Chen et al. 2012c). Gene
duplication is an important source of such functional redundancy (Ohno
1970). Now, there are two possibilities for essential genes to prefer or avoid
its duplication. First, duplication of essential genes provides backup copies
that could shield themselves from harmful mutations. Secondly, from the
evolutionary perspective, essential genes may avoid duplication since it
relaxes the effect of purifying selection on gene copies that may increase the
probability of accumulation of mutations in these duplicates. Such mutations
are not acceptable for the essential genes since they are among the most vital
and conserved gene-group within the genome (Jordan et al. 2002; Yang, Gu,

Li 2003).

The accumulation of gene knockout and knockdown fitness data in model
organisms lead to the identification and characterization of essential genes
in different organisms. Such studies have depicted a complex relationship of
gene essentiality with gene duplication (Makino, Hokamp, McLysaght 2009).
It has been shown that the lower unicellular eukaryotes like yeast possess a
higher fraction of essential genes as singletons (single-copy) than the
duplicates (Gu et al. 2003). However, works in mammalian mouse model
revealed an equal proportion of essential genes in singletons and duplicates
(Liang, Li 2007; Liao, Zhang 2007). Arguably, more recent studies with mouse
indicate that among the two gene groups, the fraction of essential genes is
significantly higher in singletons (Su, Gu 2008; Chen et al. 2012c). However,
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all studies regarding gene essentiality have been carried out in yeast and
mouse, largely due to unavailability of human gene essentiality data. A
previous study explored the properties of human orthologs of essential
mouse genes, considering themselves as ‘human essential genes’ (Georgi,
Voight, Bucan 2013). However, such estimation may not be accurate (Liao,
Zhang 2008). Fitness data from gene knockdown experiments in human cell
lines lead to the identification of human essential genes (Silva et al. 2008).
Such experimentally validated and literature-curated human gene essentiality
data were accumulated in Online Gene Essentiality (OGEE) database, which
represents a valuable resource of essential genes in a large number of
prokaryotic and eukaryotic organisms. In this study, we present a
comprehensive analysis of essential human genes and their duplication
pattern, by a genome-wide comparison of human and mouse. Our study
suggests that mouse essential genes do not prefer duplication whereas
human essential genes do. Such a trend is unexplored so far. To get a
detailed insight into such observation, we tried to investigate underlying

reasons of maintaining essential genes as duplicates in humans.
3.2. Materials and Methods:
3.2.1. Gene Essentiality and Gene Duplication:

We obtained the gene essentiality and gene duplication status of human
(Homo sapiens) and mouse (Mus musculus) from the Online Gene Essentiality

(OGEE) database (Chen et al 2012b) (http://ogeedb.embl.de). For the

duplicated genes, we obtained the duplicated pairs for mouse and human

essential genes from authors of OGEE database (Chen et al. 2012b).

3.2.2. Developmental Genes:
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We obtained the developmental genes of mouse and human from Online
Gene Essentiality (OGEE) database (Chen et al 2012b). In this database,
developmental genes are determined by their association with one of the two
GO terms: GO:0007275 (representing multicellular organism development)
and GO:0030154 (representing cell differentiation) or their daughter terms.
Genes that are not associated with any of the two terms or their daughter
terms are considered non-developmental, based on Makino’s classification of

developmental genes (Makino, Hokamp, McLysaght 2009).
3.2.3. Phyletic Age and Overall Proportion of Essentiality :

Every gene has its own phyletic origin defined as the most distance group of
organisms where the homologs (orthologs) of that gene exist. In the Online
Gene Essentiality (OGEE) database (Chen et al. 2012b), the authors used the
phyletic age prediction algorithm of Wolf et al. (Wolf et al. 2009) and divided
all genes within a genome into seven classes according to their phyletic
origin- 0 (not assigned), 1 (Mammalia), 2 (Chordata), 3 (Metazoa), 4
(Fungi/Metazoa), 5 (Eukaryote) and 6 (cellular organisms). For our analysis,
we obtained the phyletic age mouse and human genes from OGEE database.
We discarded the first group having unassigned phyletic age and selected the
rest from mouse and human genomes. Our final data contains gene
essentiality, gene duplication and phyletic age information of 5869 mouse
genes and 18400 human genes, respectively. We divided these human and
mouse genes into two groups depending on their phyletic age: the ‘old
duplicates’ (containing the older three classes) and ‘new duplicates’
(containing the rest). From this, we computed the overall proportion of
essential genes in singletons and duplicates for both species irrespective of

their age-bias, as a weighted average using this formula (Chen et al. 2012c¢):
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— 1d youn,
P=f XxPo+f  xPrmws

young

Here, f and f  represent the fraction of old and young genes, respectively,
within the gene group and P and P ™ represents the proportion of
essential genes in old and young classes, respectively. We used this formula
to calculate the proportion of essential genes irrespective of their age bias in

singleton and duplicates for both mouse and human.
3.2.4. Pseudogenization:

We obtained the mouse and human gene biotypes from ensemble biomart 71

(http://www.ensembl.org/biomart/martview) (Flicek et al. 2013). The genes

annotated as pseudogene in their gene biotype were considered as
pseudogenes. This comprise the following classes of pseudogenes:
pseudogene, IG-C-pseudogene, 1G-]J-pseudogene, IG-V-pseudogene, TR-V-
pseudogene, TR-]J-pseudogene, polymorphic pseudogene and processed
pseudogene. We computed the proportion of paralog pseudogenization by
considering the duplicated essential mouse and human genes having at least

one pseudogenized paralog.

Number of Pseudogenized Paralogs

Proportion of Paralog Pseudogenization =
p f 9 9 Total Number of Paralogs

3.2.5. Functional Distance:

We used the Gene Ontology (GO) annotations to compute the functional
distance for mouse and human essential genes. We obtained the GO domain
molecular function for essential genes and their paralogous copies for both
species from the biomart interface of Ensembl Genome Browser (version-71)

(http:/ /www.ensembl.org /biomart/martview) (Flicek et al 2013). For the

estimation of functional divergence between mouse and human essential

genes, we used the Czekanowski-Dice distance formula (Baudot, Jacq, Brun
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2004) mentioned in Resources and Methodology section (Chapter 2, Section
2.4). Finally, we obtained the functional divergence for each human and

mouse essential genes with their paralogous counterparts.

Although the Czekanowski-Dice formula is the most popularly used method
for calculating functional distance, it is very sensitive to the count of
associated GO terms per gene, which may vary between species. Thus, the
estimation of functional distance can be erroneous for cross-species
comparison, unless normalized by the number of GO terms associated with
the essential genes of both species. To ensure that, we binned our functional
distance data of the two species in three groups: Bin 1 (GO term count 1 to 4;
N, .. =367, N =773),Bin 2 (GO term count 5 to 8; N, =343, N =485)

and Bin 3 (GO term count > 8; N = 244, N = 278). We compared the

functional distance of mouse and human essential genes within each bin.
3.2.6. Micro-RNA Target Sites:

We obtained the micro-RNA target sites for mouse and human genes from

TargetScan Release 6.2 (http://www.targetscan.org) (Garcia et al. 2011). For

our analysis, we pooled together all known paralogs of each essential gene
individually, thus making various sets containing paralogs for each essential
genes in both species. We calculated the mean micro-RNA target sites of
these sets for the two species to acquire the micro-RNA target sites of
essential genes’ paralogs for each species. We considered the average value

of all sets within a species for cross-species comparison.
3.2.7. Evolutionary Rate:

We obtained the nonsynonymous nucleotide substitution per
nonsynonymous sites (dN) and synonymous nucleotide substitution per

synonymous sites (dS) from the ensemble biomart (version 71)
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(http://www.ensembl.org/biomart/martview), using one-to-one rat (Rattus
norvegicus) orthologs. The evolutionary rates of human and mouse essential

genes were calculated by the ratio of dN and dS (Flicek et al. 2013).
3.2.8. Statistical Analyses:

We performed the statistical analyses of the entire work using SPSS version
13 and in-house PERL script. We compared the mean values of different
variables between two classes of genes using Mann-Whitney U test. In-house
PERL script was used to perform two-sample Z-test to compare relative

proportions of a variable between two groups of genes.
3.3. Results and Discussions:
3.3.1. Gene essentiality and gene duplication in human and mouse:

We examined the gene essentiality and gene duplication data of human and
mouse and noticed that the proportion of essential genes among duplicated
genes vary between human and mouse. Our observations show that in
mouse, the proportion of essential genes is significantly higher in singletons,
as 994 genes are essential among 2098 singleton genes (47.38%) and 1563
genes are essential among 3771 duplicated genes (41.45%) [Z= 4.391,
confidence level 99%; P<0.0001, two sample Z-test]. Whereas, in humans, the
proportion of essential genes is higher among the duplicates, as 486 genes
exist as essential (6.43%) among 7563 singleton genes, and 984 are essential
among 10837 duplicated genes (9.08%) [Z= -6.523, confidence level 99%;
P<0.0001, two sample Z-test]. The observations clearly suggest an overall
higher proportion of essential genes in mouse, largely due to the efficacy of
the methods used to identify essential genes (Chen et al. 2012b) or the lack
of a complete gene essentiality data. However, within the same species

(where the same method is used for detection of essential genes), gene
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essentiality should contribute equally, which is not the case here, as the
comparison revealed a higher possibility of retaining essential genes as

duplicates in humans, but not in mouse.

In a previous study, Makino et al. showed that genes involved in development
are more likely to be essential than the non-developmental genes (Makino,
Hokamp, McLysaght 2009) and hence, their abundance in a particular gene
group may result in higher essentiality for that group. Thus, to find whether
the overrepresentation of developmental genes affects our observations, we
discarded the developmental genes and computed the proportion of
essential genes in human and mouse, considering only the nondevelopmental
genes (see Section 3.2.2). Our results revealed a similar trend (Table 3.1),
suggesting that our results are not influenced by enrichment in
developmental genes. Thus, we carried forward our analyses including both

developmental and nondevelopmental mouse and human genes.

Another possible data bias in our analysis may arise from the differential age
of the duplicates. Previous studies revealed that the older genes are more
essential than younger genes (Chen et al. 2012c¢) and genes derived from
older duplication events are more essential than singletons (Su, Gu 2008).
Therefore, the gene age may influence gene essentiality, leading to a biased
estimation of gene essentiality in our dataset. This age-bias was corrected by
incorporating the phyletic age of the genes to calculate the overall
proportion of essentiality (Chen et al. 2012c¢) (see materials and methods) in
singleton and duplicated mouse and human genes. We have not considered
the duplication age (the origin of most recent duplication event) as our
dataset contains both singletons and duplicates, hence, phyletic age is a

more suitable measure. After correcting the age bias, we still obtained similar
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Table 3.1. Proportion of essential genes among singleton and duplicates of mouse
and human non-developmental genes.

. Gene Essential Proporn(.)n Z-score and
Species Total genes of essential
group genes P value
genes
Mouse Singleton 1237 462 37.348 Z=5.0323
(Mus (Confidence
musculus) level 99%)
uscutu Duplicates 2301 669 29.074 P <0.0001
Human Singleton 6347 332 5.231 Z=-3.7168
(Homo (Confidence
apiens) level 99%)
sapiens Duplicates 8581 575 6.701 P=0.0002

trend in the proportion of essential genes in singletons and duplicates in

both mouse and human (Table 3.2).

Our results contradicted the previous study of Liao and Zhang (Liao, Zhang

2007), which revealed an equal proportion of essential genes among mouse

Table 3.2. Proportion of essential genes as weighted average among singleton and
duplicates of mouse and human.

. Gene Total Proportlorll of essential genes as 7-score and
Species weighted average P val
group genes Pof xPo4f xprome value
E old E young E
7=-4.392
Mouse Singleton | 2098 47.379 .
(Confidence
(Mus level 99%)
musculus) | Duplicate | 3771 41.448 P <0.0001
7= —6.
Human Singleton | 7563 6.426 ) 535
(Confidence
(Homo level 99%)
sapiens) Duplicate | 10837 9.081 P <0.0001

singleton and duplicate genes. The reason behind such contradiction may be
the difference in essential gene collection procedure followed in the older
dataset (Mouse Genome Informatics or MGI) which they used and the newer
dataset (Online Gene Essentiality or OGEE database) which we have used.

However , our observation of a higher proportion of essential genes in mouse
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singletons is consistent with two more recent studies (Su, Gu 2008; Chen et
al. 2012c). Thus, in this study, we explored why essential genes prefer
duplication in humans, but not in mouse. Here, we have done a detailed
analysis using human and mouse essential genes. As we know, duplication
leads to subsequent increase in gene dosage in the protein-protein
interaction network, which is not acceptable for essential genes as they are
highly connected (hub-like) in protein-protein interaction network (Jeong et
al. 2001; Barabasi, Oltvai 2004; He, Zhang 2006a; Goh et al. 2007). Such a
duplication leading to the dosage imbalance may not be favorable and the
duplicates must either be diversified (Li, Yang, Gu 2005) or maintained under

stringent dosage regulation (Makino, McLysaght 2010).

To investigate whether the functional divergence of the essential duplicates
supports their fixation in the human genome, or they are maintained as
backup copies under stringent dosage-regulation, we did a cross-species
comparison of the essential genes and their paralogs in mouse and human

genomes.

3.3.2. The proportions of paralog pseudogenization in human and mouse

essential genes:

As gene duplication often generates ‘useless’ duplicates that become
pseudogenized within the genome, we studied the occurrence of
pseudogenized paralogs among human and mouse essential genes. As we are
dealing with essential genes of the two species, no occurrence of pseudogene
was observed in our dataset. However, a very small proportion of the
paralogs of essential genes were found to remain as pseudogenes, with no
significant difference between human (0.50%) and mouse (0.82%) (Z= -1.584,

P= 1.13x10", two sample Z-test). Such low proportions of pseudogenes in
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both the species is normal, as we are dealing with the paralogs of genes
having crucial functions. Furthermore, we considered the proportion of
paralog pseudogenization for each essential genes having at least one
pseudogenized paralog (see Section 3.2.4). We obtained a lower proportion of
paralog pseudogenization in human essential genes than their mouse
counterparts (Proportion of paralog pseudogenization in human = 0.048,
N, ... = 63, Proportion of paralog pseudogenization in mouse = 0.178, N .=
17; P = 1.44x107, Mann-Whitney U test). This result suggests that a very low
fraction of paralogous copies of essential genes are nonfuynctionalized

(pseudogenized) and the paralogs of mouse essential genes become

pseudogenized more easily than humans.
3.3.3. Functional distance of human and mouse essential genes:

As most of the paralogs of essential genes in both species are ‘functional’,
We explored whether the human essential duplicates are functionally
diversified to become fixed within the genome, we used the gene ontology
(GO) annotations for human and mouse essential genes and their paralogous
copies from biomart interface of Ensembl 71 (Flicek et al. 2013) for the GO
domain Molecular function. The Czekanowski-Dice distance formula (see
section 2.4) was used to compute functional distance of human and mouse
essential genes (Baudot, Jacq, Brun 2004). We obtained a significantly lower
functional distance in human essential duplicates (Average functional
distance=0.340, N=954) than the mouse essential duplicates (Average
functional distance=0.385, N=1536) (P=3.73x10° Mann-Whitney U test).

However, the Czekanowski-Dice distance formula is sensitive to the number
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of gene ontology terms, which is species-specific and may vary between
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Figure 3.1: Average functional distance between the paralogous copies of
mouse and human essential genes. The mouse and human essential duplicates
are grouped into three bins based on their Gene Ontology (GO) term count and
the average functional distance between mouse and human in each bin was
compared. Error-bars represents standard errors of mean.

human and mouse. Thus, an unbiased cross-species comparison of
functional distance was performed by grouping the dataset into three bins
according to their GO term count (see Section 3.2.5). We obtained a
significantly lower functional distance in human essential duplicates than
their mouse counterparts in all three bins (Figure 3.1), which suggests that
the duplicated copies of human essential genes are functionally similar and

have the potential to serve as backup copies.

3.3.4. Mean micro-RNA target sites in the paralogs of human and mouse

essential genes:
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However, the maintenance of these functionally redundant duplicates is very
crucial, as it often leads to dosage imbalance in protein-protein interaction
network. Thus, the stable maintenance of the duplicates require efficient
dosage-regulatory mechanism, like the micro-RNA mediated regulation of
gene expression acting at the post-transcriptional level, which maintain the
backed up essential genes by reducing their expression (Li, Musso, Zhang

2008). We measured the average micro-RNA target sites of the longest

mRNAs of paralogous
Bl Mouse Essential Genes

Copies of human and B Human Essential Genes

mouse essential genes to 257 P=3.35 % 10~

understand the ability to 20
maintain the backed up
duplicates in both species

(see Section 3.2.6 for

Mean micro-RNA target sites

details). Comparing the

average micro-RNA target Mouse essential genes' Human essential genes'

paralogs paralogs
Figure 3.2: Mean micro-RNA target sites on
the mRNAs of Human and Mouse essential
genes’ paralogous copies. Error-bars represents
significantly higher standard errors of mean.

sites between the two

species, we observed a

micro-RNA target sites in

the mRNAs duplicated essential genes of human (Mean micro-RNA count
19.15, Number of sets=742) than in mouse (Mean micro-RNA count 15.82,
Number of sets=1202) (Figure 3.2) (P= 3.35x10°, Mann-Whitney U test). This
suggests that the paralogous copies of human essential duplicates are under
more robust regulation by micro-RNAs, which enables humans to maintain

the redundant duplicates.
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Therefore our study clearly suggests that the duplicated copies of human
essential genes remain mostly functionally redundant and are maintained as

backup copies, having the ability to escape the dosage imbalance.

3.3.5. The evolutionary rates of paralogs of human and mouse essential

genes:

As essential duplicates of human are functionally more redundant and are
under more stringently dosage regulated than mouse, their paralogs should
be evolutionarily more conserved to serve as backup copies upon gene
deletion. Comparing the evolutionary rates between paralogs of human and
mouse essential in terms of the ratio of dN (Nonsynonymous substitution
rates per nonsynonymous sites) and dS (Synonymous substitution rates per
synonymous sites) (see Section 3.2.7), we obtained a significantly slower
evolutionary rate in the paralogs of human essential genes (dN/dS =

human

0.101, dN/dS,

mnouse

= 0.128, P= 2.53x10°°, Mann Whitney U test, N =2931,

mouse

N, . =1651), as indicated by their lower dN/dS ratio. This suggests that the
redundant paralogous copies of human essential duplicate genes possess
higher evolutionary conservation, and therefore may serve as backup copies,

increasing the robustness against gene deletion fitness.
3.4. Conclusion:

Gene duplication is a genetic mutation that generates multiple redundant
copies of a gene. The retention of these redundant gene copies demands
functional diversification or functional redundancy with regulated protein
dosage. In this study, we observed that human duplicated genes have a
higher proportion of essential genes, a trend which is different from mouse.
We showed that the duplicated copies of human essential genes are

functionally more redundant. These copies are also evolutionarily more
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conserved than that in mouse. We also demonstrated that these functionally
redundant gene copies could be maintained by a more efficient dosage-
regulation in humans. This study sheds light on the importance of human
duplicated essential genes that reduce the fitness effect of gene deletion,

thereby increasing the robustness against deleterious mutations in humans.
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The importance of whole-genome duplication in

human genome evolution

/Gene duplication provides raw genetic materials required for structural ah
functional innovations that are essential elements for genome and organism

evolution. The duplication of one or a few genes (Small scale duplication or
SSD) is required for such functional innovations. However, major evolutionary
transitions may require a vast number of new raw genetic materials, that are
yielded by processes like the duplication of the whole genome (whole genome
duplication or WGD) to generate new functions beneficial for such transitions.
More recent studies with gene duplication consider these two group of
duplicates separately, as studies with yeast revealed plenty of differences
between the two classes of duplicates: Yeast WGD pairs were functionally
more similar, more similar in subcellular localization and are depleted in
essential genes. The two rounds of whole genome duplication occurring early
in vertebrate evolution is the root of the whole-genome duplicates that are
today present in vertebrates like fishes, amphibians, reptiles, birds and
mammals. Here, we explored the evolutionary genomic attributes of human
SSD and WGD genes, in a comparative analysis involving these two classes of

duplicates in human, to investigate the contribution of whole-genome

\duplication in human evolution. /

Keywords: Small-scale duplication, Whole-genome duplication, Functional

divergence, Evolutionary rate, Protein multifunctionality, Gene essentiality,

Disease genes.

Adapted from Acharya and Ghosh, 2016, BMC Genomics 17:71
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4.1. Introduction:

Gene duplication generates new gene copies from pre-existing ones and is an
important source of genome evolution (Stephens 1951; Ohno, Wolf, Atkin
1968; Ohno 1970). Initially after duplication, the newly-formed gene copies
remain functionally redundant, leading to a relaxation of purifying selection
on both the gene copies, often resulting in the adoption of new
functions(Ohno 1970; Clark 1994; Teshima, Innan 2008; Innan, Kondrashov

2010).

Therefore, gene duplication is an essential process guiding organism
evolution as it provides raw genetic elements for genome evolution (Ohno,
Wolf, Atkin 1968; Ohno 1970; Taylor, Raes 2004). However, the retention of
duplicated gene copies is not an easy process, as most of the duplicates
nonfunctionalize and/or lost from the genome following duplication (Ohno
1970), whereas some of the duplicates are retained in the genome in the
course of evolution. Such retention of duplicates may prove advantageous, as
the newly formed redundant duplicates serve as backup copies providing
functional compensation after gene deletion (Liang, Li 2009), thus providing
increased genetic robustness against harmful and deleterious mutations (Gu
et al. 2003). However, gene duplication leads to a change in gene-dosage in
protein-protein interaction network and thus, the retention of duplicated
copies require favorable circumstances like increased gene dosage advantage,
where the increment in the gene product after duplication turn out to be
advantageous to the organism (Kondrashov, Kondrashov 2006; Innan,
Kondrashov 2010) or a stringent regulation in gene dosage after duplication
(Li, Musso, Zhang 2008; Chang, Liao 2012) or regulation of the expression

patterns of duplicated copies (Li, Yang, Gu 2005; Ganko, Meyers, Vision 2007;
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Li et al. 2009; Qian et al. 2010). Additionally, after duplication, the duplicated
copies may be diversified by adapting new functions or expression patterns
(neofunctionalization) (Ohno 1970), or by sharing the ancestral function or
expression after accumulating complementary degenerative mutations
(subfunctionalization) (Force et al. 1999; Lynch, Force 2000). They may also
diverge at the subcellular localization, where the proteins encoded by the
duplicated pairs localize into different cellular compartments (Marques et al.

2008).

Therefore, it is quite clear that gene duplication leads to a modification in
the protein-protein interaction network. However, there are subtle
differences in the extent of gene duplication. Usually, duplication involves a
single gene [known as small-scale duplication or SSD], whereas, duplications
at a larger scale may comprise many genes, chromosomal segments.
Duplication may even involve the whole genome, a phenomenon known as
the whole-genome duplication (WGD) (Hakes et al. 2007). These two types of
gene duplication also vary regarding their occurrence. While small-scale
duplication may occur at any moment and may be retained in the course of
evolution, whole genome duplication events are much rarer within
eukaryotes, being most frequent and broadly studied in plant genome
evolution (Stebbins 1971; Blanc et al. 2000; Wendel 2000; Adams, Wendel

2005b).

However, evidences of an ancient WGD in the yeast genome evolution (~150
Mya) (Wolfe, Shields 1997; Dujon et al. 2004; Kellis, Birren, Lander 2004) and
two-rounds of whole-genome duplication (2R-WGD) in the early vertebrate
evolution (~530 Mya) (Allendorf, Thorgaard 1984; Zhou, Cheng, Tiersch 2001;

McLysaght, Hokamp, Wolfe 2002; Dehal, Boore 2005; Brunet et al 2006b;
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Nakatani et al. 2007) were also confirmed in earlier studies. Previous studies
also claim that the 2R-WGD provides the raw materials for increasing
genome and organism complexity and extensive species diversity (Zhou,
Cheng, Tiersch 2001; Dehal, Boore 2005), being an important process in

vertebrate evolution (Allendorf, Thorgaard 1984; Dehal, Boore 2005).

Moreover, the functions of a gene are mediated by the proteins encoded by
them, which in turn function by interacting with other such proteins, thereby
forming a protein-protein interaction network (PPIN) (Chakraborty, Ghosh
2013). Thus, the functional precision of any gene not only depends on itself
but also on its interacting partners. The stoichiometric balance of the
proteins within a PPIN, therefore, has an important contribution on gene
function. The retention of duplicated genes creates a stoichiometric disparity
in the PPIN, as the duplicated genes produces more proteins than the non-
duplicated proteins within the same PPIN (Papp, Pal, Hurst 2003; He, Zhang
2006b; Birchler, Veitia 2007). Hence, the contribution of SSDs and WGDs to
the stoichiometric balance of their associated PPIN are different (Lynch,
Conery 2000; Freeling, Thomas 2006; Hakes et al. 2007; Makino, McLysaght
2010; Fares et al 2013). Following WGD, the whole PPIN duplicate
simultaneously, maintaining the stoichiometric balance of PPIN; but after
SSD, the duplicated gene forms more protein relative to its non-duplicated
interacting partners, thereby creating a protein dosage imbalance in the PPIN.
Therefore, from the above perspective, whole-genome duplicates are thought
to be preserved intact within the genome, keeping the gene dosage of the
PPIN intact (Makino, McLysaght 2010). Thus, deviating from the conventional
comparison between the evolutionary genomic properties of singletons and
duplicates (Robinson-Rechavi, Laudet 2001; Gu et al 2003; Jordan, Wolf,
Koonin 2004), a better resolution can be achieved by a domparison between
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duplicates originating from SSD and WGD events. With the availability of
completely sequenced genome for many yeast species, researchers identified
the duplicates originated from these two types of duplication (Kellis, Birren,
Lander 2004). The comparison of these two distinct duplicate groups in yeast
revealed noticeable differences (Guan, Dunham, Troyanskaya 2007; Hakes et
al. 2007; Fares et al. 2013). The yeast duplicate pairs originating from WGD
are functionally more similar than those originating from SSD, irrespective of
their sequence similarity (Guan, Dunham, Troyanskaya 2007; Hakes et al
2007). Additionally, yeast WGD-pairs are more often colocalized in the same
cellular compartment (Fares et al. 2013). Also, genes undergoing small-scale
duplication in yeast contain a higher proportion of essential genes than

WGDs (Guan, Dunham, Troyanskaya 2007; Hakes et al 2007).
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Figure 4.1: The occurrence of two-rounds of whole-genome duplication
(2R-WGD) in vertebrate evolution (Adapted from Kasahara (2007), Current
Opinion in Immunology, 19:547-552).

The occurrence of 2R-WGD early in the vertebrate evolution (Zhou, Cheng,

Tiersch 2001; McLysaght, Hokamp, Wolfe 2002; Dehal, Boore 2005; Brunet et
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al. 2006b; Kasahara 2007; Singh, Arora, Isambert 2015b), and the subsequent
detection of the existing whole-genome duplicates within human genome
(McLysaght, Hokamp, Wolfe 2002; Makino, McLysaght 2010; Singh, Arora,
Isambert 2015b) lead us to compare the evolutionary genomic attributes of
human small-scale and whole-genome duplicates (SSDs and WGDs,
respectively). As stated previously, the human WGDs are much more older
than yeast in terms of their origin (~530 Mya vs ~150 Mya, respectively), we
hypothesized that these human duplicates were subjected to more

evolutionary pressure than yeast due to their longer evolutionary exposure.

Thus, our study will explore the significance and the long-term evolutionary
fate of human whole-genome duplicates with those duplicates originating

spontaneously at small-scale.
4.2. Materials and methods:
4.2.1. Classification of human duplicated genes:

We obtained the human protein-coding genes (N=22447) from the Ensembl
biomart (version 77) (Flicek et al 2014)

(http://www.ensembl.org/biomart/martview). Human whole-genome

duplicates (WGDs) were collected from two datasets: 1. The supplementary
dataset from Makino and McLysaght (Makino, McLysaght 2010) and 2.

OHNOLOGS database (http://ohnologs.curie.fr/) (Singh, Arora, Isambert

2015b) using the strict dataset [g-score (outgroup) < 0.01 and g-score ](self
comparison) < 0.01] to maintain the stringency of our data. Other human
duplicated pairs not assigned as WGDs were obtained from the Ensembl
biomart 77 and designated small-scale duplicates (SSDs). We used 50%
sequence identity and high paralogy confidence to assign paralogs, to retain

old and distant paralogs in our dataset. Finally, we obtained 34746
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duplicated pairs among which 21446 pairs are SSD-pairs (comprising 4670

genes), and 13300 pairs are WGD pairs (containing 7070 genes).

As the origin of WGDs and SSDs are different in evolutionary time-scale,
these two classes of duplicates may also differ in terms of sequence
similarity between duplicated pairs. The WGDs are much older, being
originated during the evolution of early vertebrates, whereas the SSDs are of
both recent and ancient in origin, containing more recent duplicates than
WGDs. Therefore, the SSDs are most likely to be less diverged in sequence
level than the WGDs. Thus, the bias due to the differential sequence
divergence of SSDs and WGDs should be removed for the comparison of the
functional properties of these two classes of duplicates. Such bias was
removed by binning our dataset according to the nonsynonymous nucleotide
substitution per nonsynonymous sites (dN) values between each duplicated
pairs, as dN brings changes at the protein level and older duplicate group
(WGD) typically have higher dN than the newer one (SSD). We splited both the
SSD and WGD pairs into five bins based on dN ranges between the paralogs —
dN dN

dN dN and dN _ , . We did a pairwise comparison the

0.0-0.17 0.1-0.2’ 0.2-0.37 0.3-0.4

evolutionary genomic features of SSD and WGD genes in each such dN bin.

For the comparison of individual gene properties of SSD and WGD genes, we
made another dataset. From our data of SSD and WGD gene pairs, the genes
having multiple paralogs of different origin, that is, at least one originated
via small-scale duplication and at least one originated via whole-genome
duplication were discarded. Finally, we obtained a nonredundant set of 9386
genes with only SSD or only WGD pairs, but not both. Considering these two
groups of gene pairs, we prepared two distinct sets of genes: 1) Genes (and

its paralogous copies) involved in Small-scale duplication only (SSD-only)
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(containing 3478 genes), and 2) Genes involved in Whole-genome duplication

only (WGD only) (containing 5908 genes).
4.2.2. Functional similarity:

The functional annotation of human protein-coding genes by considering
their association with Gene Ontology terms were obtained from the Ensembl
biomart (version 77)(Flicek et al. 2014). We considered the GO domains
‘Biological Process’ and ‘Molecular function’ separately for the estimation of
functional similarity within paralogous pairs. The functional similarity within
each of the SSD- and WGD-pairs were calculated by their GO annotations,
using the using Bayesian data integration method (Guan, Dunham,
Troyanskaya 2007; Podder, Ghosh 2011), that measures the functional
similarity between any duplicated pairs ‘7 and ‘j as -

2 xS (i))
[GO terms(i)+GO terms(j)]

Functional Similarity (i, j) =

Where ‘S(i, j)’' represents the Gene Ontology terms shared between the

duplicated gene pairs ‘7’ and ‘J.
4.2.3. Subcellular localization:

We obtained the protein subcellular localization by the association of
respective genes’ Gene Ontology terms for the GO domain ‘Cellular
component’ from the Ensembl biomart (version 77) (Flicek et al. 2014). With
the associated GO-terms of a gene and its paralogous copy(ies), we calculated
the shared subcellular compartments for each SSD- and WGD-pairs. With the
same formula used in section 4.2.2 for the calculation of functional
similarity, we calculated the shared subcellular localization for each
duplicated gene pairs. We compared the SSD- and WGD- pairs of similar dN

bins (as mentioned in Section 4.2.1).
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4.2.4. Gene expression:

We obtained the RNA-seq gene expression data of human duplicated genes
from two databases- (1) The Human Protein Atlas (Release 9)

(http://www.proteinatlas.org/): containing gene expression values of 9113

duplicated genes in 27 different tissues (namely, adipose tissue, adrenal
gland, appendix, bone marrow, cerebral cortex, colon, duodenum, oesophagus,
gallbladder, heart muscle, kidney, liver, lung, lymph node, ovary, pancreas,
placenta, prostate, salivary gland, skin, small intestine, spleen, stomach, testis,
thyroid gland, urinary bladder, and uterus) (Uhlen et al 2005; Uhlén et al

2015) and (2) EMBL-EBI Expression Atlas (http://www.ebi.ac.uk/gxa):

containing 9393 duplicate genes in 32 human tissues (namely adipose tissue,
adrenal gland, ovary, appendix, bladder, bone marrow, cerebral cortex, colon,
duodenum, endometrium, oesophagus, fallopian tube, gall bladder, heart,
kidney, liver, lung, lymph node, pancreas, placenta, prostate, rectum, salivary
gland, skeletal muscle, skin, small intestine, smooth muscle, spleen, stomach,
testis, thyroid, and tonsil) (Kapushesky et al. 2012; Petryszak et al. 2014).
These two repositories present high-throughput experimental RNA-seq gene
expression data in human tissues. We obtained the expression profile
similarity within each duplicate pairs by the Pearson correlation coefficient,
which states that for a paralogous pair ‘’ and ‘j, the expression correlation
is-

NYij—-QED&)
VINE 2 = ED2INES? - EHA

Pearson correlation coefficient (r) =

Where ‘N’ is the number of tissues, };ij’ is the sum of the products of paired
expression intensities, ‘Y i’ sum of expression intensities for gene ‘7, ‘(¥ i?)’ is

sum of squared expression intensities of gene ‘7, )’ is the sum of
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expression intensities for gene ‘j, ‘Y%’ is sum of squared expression

intensities of gene ‘.
4.2.5. Evolutionary rate:

We calculated the evolutionary rate of human genes by the dN values
(Begum, Ghosh 2010), as well as the Z—IZ ratio (Wall et al. 2005; Chen et al

2012a), both being conventionally and widely used for the estimation of
evolutionary rate, where dN refers to Nonsynonymous nucleotide
substitution per nonsynonymous sites and dS denotes Synonymous

nucleotide substitution per synonymous sites.

In this study, we took one-to-one Human-Mouse (Homo sapiens-Mus
musculus) and Human-Chimpanzee (Homo sapiens-Pan troglodytes) orthologs
to obtain the dN and dS values from Ensembl biomart (version 77) (Flicek et
al. 2014). We controlled the mutation saturation by discarding all dS values>
3.00 (Begum, Ghosh 2014). We compared the evolutionary rate differences

between the SSD-only and WGD-only gene groups.
4.2.6. Multifunctionality:

The Multifunctionality of a gene and its encoded protein was measured by
two approaches: (A) Using their Gene Ontology annotation (Gene Ontology
2004) for the GO domain ‘biological process’ from Ensembl Genome Browser
(Flicek et al. 2014), we calculated the unique biological processes of which a
gene and its encoded protein(s) take part and used as the measurement of
multifunctionality (Podder, Mukhopadhyay, Ghosh 2009; Satake et al. 2012),
(B) Additionally, we also considered the number of functional protein
domains as proxy of Multifunctionality using Pfam protein families database.
Finally, we compared the multifunctionality of SSD-only and WGD-only
genes.

58



Chapter 4 The importance of whole-genome duplication in human genome evolution

4.2.7. Gene essentiality:

We obtained human essential and nonessential genes from the Online GEne

Essentiality (OGEE) database (http://ogeedb.embl.de/#overview)(Chen et al

2012b). From this, we were able to match the gene essentiality information of
2692 SSD-only and 5730 WGD-only genes in our dataset. We calculated the

proportion of essential genes within each of these duplicate sets.
4.2.8. Disease genes:

The genes which cause disease phenotypes upon mutation(s) is referred to as
‘disease genes’. We obtained such disease genes in human genome from the
‘Human Gene Mutation Database’
(http://www.hgmd.cf.ac.uk/ac/index.php)(Stenson et al 2012), which
contains both the monogenic and polygenic disease genes and considered
these together as human disease genes. From this database, we collected
9668 disease genes, among which 9299 genes were matched to our dataset.
All the other genes were considered as non-disease genes (N= 13148). Here,
we compared the proportion of disease genes between the SSD-only (N=3478)

and WGD-only (N=5908) sets.
4.2.9. Software:

The SPSS package (version 13) (Nie, Bent, Hull 1970) and our in-house PERL-
script was used for all statistical analyses. The R-package (lhaka, Gentleman

1996) was used for representation of data.
4.3. Results:
4.3.1. Functional similarity of human SSD and WGD pairs:

We compared the functional similarities between the human small-scale and

whole-genome duplicate pairs using the Gene Ontology (GO) terms for both
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GO domains ‘biological process’ and ‘molecular function’ from Ensembl
biomart (version 77) (Flicek et al 2014). We observed a higher functional
similarity in small-scale duplicate (SSD) pairs than the whole-genome
duplicates (WGD) (Table 4.1). As we know, the functional similarity between
duplicated pairs usually decrease due to their nucleotide substitutions,
which is also dependent on the age of the duplicates, the older duplicates
being prone to more nucleotide substitutions. Thus, we compared the
functional similarity between paralogs by binning our dataset according to
different dN (nonsynonymous nucleotide substitution per nonsynonymous
site) ranges (Section 4.2.1), as dN brings changes in amino acids in genes’
encoded protein(s). The binning was adapted from Hakes et al. (Hakes et al.
2007), and we observed that WGDs have a higher dN value the SSDs, as they
are evolutionarily more ancient. We found a higher functional similarity
among SSD-pairs in contrast to the WGD-pairs in all the dN bins (Table 4.1)
considering both the GO domains- biological processes and molecular
function (Figure 4.2). In other terms, human WGD pairs are diverge more in

their function, irrespective of their sequence divergence.
4.3.2. Subcellular localization of human SSD and WGD pairs:

As the function of genes are typically mediated by their encoded proteins,
which becomes relocated to the desired cellular compartments after being
synthesized. The function of a protein is usually limited to the cellular
compartment to which it is localized and hence, the proteins encoded by
paralogous genes may become localized to different cellular compartments.
Thus, the subcellular protein compartmentalization neutralizes the
functional redundancy of duplicates at the protein level (Byun-McKay, Geeta

2007; Marques et al. 2008; Qian, Zhang 2009). In this study, we considered
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the protein subcellular localization as a fate of the duplicated genes.
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Figure 4.2: Functional similarity between human small-scale and whole-
genome duplicate pairs. The SSDs are represented in brick red and WGDs are
represented in blue. The red and blue lines represent the mean functional
similarity of SSD and WGD pairs, respectively. The black line represents the
mean functional similarity of all human duplicates. The functional similarities
between different dN ranges were calculated using both GO domains A.
Biological Process and B. Molecular Function (For every dN range, P<0.05).

We obtained the protein subcellular localization of human genes using the

Gene Ontology (GO) terms with the GO domain ‘Cellular Component’.
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We calculated the subcellular co-localization between the paralogous copies
of human SSD- and WGD-pairs (see Materials and methods). The subcellular
colocalization denotes the shared cellular compartments by a duplicated
pair. We obtained a higher subcellular co-localization of SSD pairs than the
WGD pairs (Table 4.1). After binning our dataset in different dN ranges as
mentioned earlier, the trend remains unchanged in each dN range (Table 4.1,
Figure 4.3), suggesting that the proteins encoded by SSD-pairs are more often
co-localized and that in WGD-pairs are co-localized less often, irrespective of

their sequence divergence.
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Figure 4.3: Subcellular co-localization between human small-scale and
whole-genome duplicate pairs. The SSDs are represented in brick red and
WGDs are represented in blue. The red and blue lines represent the mean
functional similarity of SSD and WGD pairs, respectively. The black line
represents the mean functional similarity of all human duplicates (For every dN
range, P<0.05)

4.3.3. Gene expression correlation between SSD and WGD pairs:

Gene expression is an important contributor in the maintenance of
duplicated genes. Duplication leads to an increment of gene products, which
necessitates their divergence. Previous studies suggested that gene

expression patterns of duplicated pairs usually undergo spatial variation
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[reviewed in Li et al (Li, Yang, Gu 2005)], leading to their stable maintenance
(Qian et al. 2010). Thus, the divergence of duplicated pairs also occurs at
their gene expression profiles. To delve further in this context, we explored
the co-expression of duplicate pairs among different tissues after gene
duplication, using the gene expression profiles of human genes and their
paralogous copies in a wide range of normal tissues (Li, Yang, Gu 2005;

Ganko, Meyers, Vision 2007; Marques et al. 2008).

We obtained recent high-throughput RNA-seq gene expression data of a wide
range of normal human tissues from the Human Protein Atlas (Uhlen et al.
2005; Uhlén et al. 2015) and EMBL-EBI Expression Atlas (Kapushesky et al
2012; Petryszak et al. 2014) (see Section 4.2.4) . We used the Pearson
correlation coefficient to calculate the coexpression of paralogous pairs and
compared the SSD- and WGD-pairs. We observed a higher co-expression in
human SSD-pairs than the WGD-pairs. The result is also consistent when
splitted in dN bins (Table 4.1, Figure 4.4). This suggests that the functionally
redundant SSD-pairs are coexpressed in the same tissue(s) more often than

the functionally divergent WGD-pairs.

4.3.4. Comparison of human whole-genome duplicates with young and old

small-scale duplicates:

Our study with human small-scale and whole-genome duplicates clearly
suggests that these two groups of duplicates are quite different in their
evolutionary genomic properties. To explain this, we hypothesized that our
results reflect the long-term evolutionary fates of vertebrate whole-genome
duplication. However, as the timing of duplication and subsequently the age
of WGD and SSD duplicates may be different, we were interested to observe

the proportion of recent and ancient duplicates among the SSD duplicates in
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Figure 4.4: Differences in gene expression correlation between human small-
scale and whole-genome duplicate pairs. The gene expression correlation
values of SSD and WGD pairs were calculated using RNA-seq gene expression
data from A. Human Protein Atlas and B. EMBL-EBI Expression Atlas. The
SSDs are represented in brick red and WGDs are represented in blue. The red and
blue lines represent the mean gene expression correlation of SSD and WGD
pairs, respectively. The black line represents the mean of gene expression
correlation of all human duplicated gene pairs. (For every dN range, P<0.05)
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our dataset. For this, we obtained the phylostratum gene age data from Neme
and Tautz (2013)(Neme, Tautz 2013) where the human genes were ranked
according to their earliest evolutionary origin. We classified all the SSD genes
in our dataset into two groups- (A) Old SSD: representing all the genes before
the emergence of eutherian mammals (having phylostratum rank 1-15) and
(B) Young SSD: genes originated during eutherian lineage or later (having
phylostratum rank 16-20). Mapping these two classes with our dataset of
4640 genes involved in small-scale duplication, we obtained 3888(95.29%)
01d-SSD and 192(4.71%) Young-SSD genes. We mapped these Old- and New-
SSD genes with our dataset of 21446 SSD pairs and obtained 14846 Old-SSD

pairs and 642 Young-SSD pairs. We discarded the duplicated pairs where one
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Figure 4.5: The differences between human young small-scale duplicates
(Young-SSD) and old small-scale duplicates (Old-SSD) with whole-genome
duplicates (WGD). Y-axis represents the similarity scores of paralogous pairs.
Young-SSDs, Old-SSDs and WGDs are represented in pink, brick red and blue,
respectively. A. Functional similarity of duplicated pairs using ‘GO Biological
Process’ annotation. B. Functional similarity of duplicated pairs using ‘GO
Molecular Function’ annotation. C. Subcellular Co-localization of duplicated
pairs using ‘GO Cellular Component’ annotation. D. Gene expression correlation
among duplicate pairs using ‘The Human Protein Atlas’ data. E. Gene expression
correlation among duplicate pairs using ‘EMBL-EBI Expression Atlas’ data.
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gene is 0ld-SSD, and other is Young-SSD for maintaining stringency and
facilitate pairwise comparison. We observed that both the Old- and Young-

SSD genes show significant differences with WGD genes (Figure 4.5).

In addition to this, the low proportion of Young-SSD genes in our dataset
clearly indicates that indeed our data of SSD pairs are not significantly
enriched in younger genes (Z= 79.875, confidence level 99%; P < 1.00 x 10-4,
two sample Z-test). Therefore, the differences between human SSD and WGD
duplicates really reflect the long-term fate of vertebrate whole-genome

duplicates, in comparison with small-scale duplicates.

4.3.5. The difference between Small-scale and Whole-genome duplication

in Xenopus tropicalis genome:

Our results suggest a higher functional divergence, less subcellular
colocalization and lower gene expression correlation between WGD-pairs, in
contrast to SSDs. This indicates a possibility of whole-genome duplicates to
become diverged and adapted to new functions, reflecting the fate of
vertebrate genome duplication in long evolutionary time-scale. However, as
humans are very distantly related to the whole genome duplication event
during early vertebrate evolution, we compared WGD and SSD in Xenopus
genome to strengthen our conclusion. As Xenopus (Class: Amphibia, Order:
Anura) is much more closely related with reference to whole-genome
duplication than human, we compared the Xenopus SSD and WGD-pairs for a
detailed insight into the fate of SSD and WGD-genes. We used our dataset of
34746 human duplicated gene pairs and matched with their one-to-one
Xenopus (Xenopus tropicalis) orthologs from Ensembl biomart
(version77)(Flicek et al. 2014). Finally, we obtained 1020 SSD and 8078 WGD

pairs of Xenopus. Similar to our analysis in humans, the functional similarity
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between Xenopus duplicated pairs were obtained using the Gene Ontology

annotation for GO
domains  ‘Biological
Process’ and

‘Molecular Function’.

The protein
subcellular co-
localization was

measured using Gene
Ontology annotation
for GO domain
‘Cellular Component’.
We binned our
dataset according to
different dN ranges
(as described in the
Materials and
Methods section in
the manuscript) and
compared SSD and
WGD pairs within

each dN range. We
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Figure 4.6: The differences between Xenopus
tropicalis small-scale (SSD) and whole-genome
duplicates (WGD). SSDs are represented in brick red
and WGDs are represented in blue. Significant P-
values are marked in red. A. Functional similarity of
xenopus SSD and WGD pairs using ‘GO Biological
Process’ annotation. B. Functional similarity of
xenopus SSD and WGD pairs using ‘GO Molecular
Function’ annotation. C. Subcellular Co-localization of
Xenopus SSD and WGD pairs using ‘GO Cellular

Component’ annotation.

observed that, unlike humans, most of the differences are insignificant. We

summarized all results in Figure 4.6. For ease of understanding, the

significant P-values were marked in red font.

4.3.6. Evolutionary rate of human SSD and WGD genes:
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The differences in the evolutionary genomic attributes of human SSD- and
WGD-pairs clearly suggest that the human WGDs diverge themselves to
become expressed in new locations and serve new functions. However, the
evolutionary rate differences between these two classes of duplicated genes

are unclear. Thus, we compared the evolutionary rates of human SSD-only

ay

S ratios (see Section 4.2.5

and WGD-only genes by their dN-values and the

for details), using their one-to-one Mouse and Chimpanzee orthologs. We
obtained a significantly slower evolutionary rate in WGD-only genes in all the
cases (Figure 4.7). This indicates that the human duplicated genes
orioginated via whole-genome duplication are evolutionarily more conserved,
besides their higher functional divergence and lower coexpression and co-
localization than the SSD genes. Our result is consistent with a previous
study (Satake et al 2012) and in agreement with the idea of slower
evolutionary rate of duplicated genes after adapting to new functions and

locations, as revealed by Jordan et al. (Jordan, Wolf, Koonin 2004).
4.3.7. Multifunctionality of human SSD and WGD genes:

The higher functional divergence along with the lower subcellular co-
localization and gene expression correlation of human WGD genes and their
higher evolutionary conservation indicate that they tend to adapt to
miscellaneous functions, compared to the SSD counterparts. As one of our
major aim of present study is to explore functional fates of human SSD and
WGD genes, we were curious which group among these two is associated
with more functions. For this, the unique GO biological process terms
(Salathe, Ackermann, Bonhoeffer 2006; Podder, Mukhopadhyay, Ghosh 2009)
and the Pfam domain count (Finn et al. 2014) were used as proxies of

multifunctionality (see, Section 4.2.6). Comparing the SSD-only and WGD-only
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Figure 4.7: Differences in evolutionary rates of human small-scale and
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AN ..
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were used as the measurements of evolutionary rate. The SSDs are represented
in brick red and WGDs are represented in blue. Exact P-values are provided in
the figure.
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genes, we observed that WGD genes are associated with more GO biological
process terms [Mean number of unique GO-BP terms in SSD-only genes ~ 5,
Mean number of unique GO-BP terms in WGD-only genes ~ 10, P= 6.707 x 10
12, Mann Whitney U test, N = 2569, N == 5437] (Figure 4.8A). Additionally,
the WGD group contains significantly more domains in their encoded
proteins than the SSD group [Mean number of Pfam domains in SSD = 1.61,
Mean number of Pfam domains in WGD = 2.02, P = 1.130 x 10%, Mann
Whitney U test, N = 3060, N = = 5607] [Figure 4.8B]. Together, these results
suggest that the human whole-genome duplicates are associated with more

number of functions than the small-scale duplicates.
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Figure 4.8: Multifunctionality of human small-scale and whole-genome
duplicates: A. Using their association with unique GO-Biological Processes.
B. Using the number of Pfam domains. The SSDs are represented in brick red
and WGDs are represented in blue. Exact P-values are provided in the figure.

4.3.8. Gene essentiality of human SSD and WGD genes:
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Our study suggests that the WGD genes are evolutionarily more conserved
and adapted to more functions than the SSD genes. However, for a deeper
understanding of the important roles played by WGD genes in humans, the

importance of such functions from organismal perspective is also crucial.

The importance of a gene is usually measured in terms of its essentiality, as
indicated by the fitness effect of gene-deletion. Essential genes, that leads to
sterility or lethality in humans were obtained from the Online GEne
Essentiality (OGEE) Database (Chen et al. 2012b). Comparing the proportion
of essential genes in human SSD-only and WGD-only genes, we observed a
significantly higher proportion of essential genes within the WGD class
[Proportion of essential genes in SSD-only genes= 4.601%, Proportion of
essential genes in WGD-only genes= 11.344%; N = 2692, N .= 5730] [Z= -
9.99, confidence level 99%; P < 1.00 x 10+, two sample Z-test]. In other terms,
a higher portion of WGD genes are required for the viability than SSD genes,

which may be due to the absence of redundant paralogs in WGDs.
4.3.9. Disease association of human SSD and WGD genes:

Another contributing factor to the importance of a gene within an organism
is its association with disease. Previous studies suggest that the gene
duplication and subsequent increase in functional redundancy reduces the
risk of disease formation by functional restoration upon deleterious
mutations (Dean et al. 2008; Hsiao, Vitkup 2008; Wagner 2008). Therefore,
the genes involved in disease should remain as singletons (Forslund et al
2011). More recent studies hypothesise that the increased genetic
redundancy after gene duplication prefers accumulation of disease-prone
mutations on the duplicates. As a consequence, the duplicates may be more

disease prone than singletons (Dickerson, Robertson 2012). Works with
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Monogenic disease genes revealed their association with whole-genome
duplicates (Makino, McLysaght 2010; Chen et al 2013). In this study, we
obtained the human disease associated genes from the Human Gene
Mutation Database (HGMD) (Stenson et al. 2012), which contains both
monogenic (Mendelian) and polygenic (complex) disease genes. We observed
that theOur result revealed a significantly higher proportion of disease genes
among the duplicates originating from whole-genome duplication

[Proportion of disease genes in WGD= 61.46%, N = 5908]; than those

WGD
originating from small-scale duplication [Proportion of disease genes in SSD
genes= 27.89%, N = 3478] [Z= -31.420, confidence level 99%; P < 1.00 x 10%,
two sample Z-test]. Together, these results suggest that the functions to
which the human WGD genes are adapted are more vital than that of SSD
genes. Also, the reduced functional redundancy of WGD genes increases their

susceptibility to cause disease, lethality, and sterility in contrast to the

functionally more redundant SSD genes.
4.4. Discussions:

Gene duplication is the main source of new genetic materials, thus playing a
major role in increasing genetic novelty and genome evolution. Gene
duplication and subsequent accumulation of mutations lead to the
generation of new genes from the older ones. Mutation on the duplicated
gene copies creates structural changes within the DNA, subsequently leading

to changes in protein structure and function.

Although after gene duplication the duplicated copies of a gene may retain
their functional redundancy and maintained as backup copies, they may
accumulate mutations to diverge and adopt new functions during evolution

(Ohno 1970; Zhang 2003; Taylor, Raes 2004). However, duplication of a gene
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creates a disparity in the protein-protein interaction network, as the
duplicated gene produces more proteins than its singleton interacting
partners. Such disparity, known as ‘dosage imbalance’, becomes even more
pronounced after the duplication of a highly-connected (hub) gene (Jeong et
al. 2001). However, based on its extent, gene duplication may have dissimilar
effects on the gene-dosage in protein-protein interaction (PPI) network.
Previous studies with yeast revealed that the duplicates originating from
whole-genome duplication event maintain their stoichiometry within the
protein-protein interaction network, as it increases the dosage of its every
participant. Duplicates originating via small-scale duplication, in contrast,
creates a stoichiometric imbalance within the PPI-network. They have also
shown that yeast small-scale duplicates become functionally more divergent
to maintain the stoichiometric balance of PPI network (Lynch, Conery 2000;
Freeling, Thomas 2006; Hakes et al. 2007; Makino, McLysaght 2010; Fares et

al. 2013).

However, as whole-genome duplication leads to the simultaneous generation
of many genes, they are associated with major evolutionary transitions
(Vandepoele et al. 2004; Dehal, Boore 2005; Singh et al. 2012; Singh, Arora,
Isambert 2015b). Thus, we hypothesized that with increasing complexity and
genetic robustness of organisms, the whole-genome duplicated genes may
adapt to new functions, maintaining the resilience of the PPI network at the
same time. In this study, we explored the long-term fates of vertebrate
whole-genome duplication, by analyzing the human whole-genome duplicates
(WGDs). The human WGDs have originated from the two rounds of vertebrate
whole-genome duplication occurred long time ago in evolutionary scale
(~530 Mya). Thus, they must be evolved during the evolution from fish to
humans.
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In this study, we compared the attributes of human duplicates originated via
small-scale duplication to those via whole-genome duplication. As the SSDs
and WGDs are not similar in their origin, and therefore there are differences
in their sequence divergence, with the older WGD-pairs having a higher
probability of accumulating sequence divergence. Therefore, we binned our
datasets based on the non-synonymous nucleotide substitutions (dN)
between duplicated pairs to compare the evolutionary genomic properties of
SSD and WGD duplicates (Hakes et al. 2007). Using this approach, we were
able to compare these duplicates independent of the changes in nucleotide
sequence that bring changes in amino acids, and in turn encoded proteins

(Hakes et al. 2007).

Our results suggest that the human SSDs and WGDs possess subtle
differences in their evolutionary genomic properties. While SSD pairs are
functionally more similar to each other than the WGD pairs, irrespective of
their sequence divergence. The results are same using both the ‘Biological
Process’ and ‘Molecular Function’ domains of Gene Ontology(GO) (Figure 4.2,
Table 4.1). Thus, the whole-genome duplicates tend to diverge functionally
more than the small-scale duplicates. Furthermore, the functions of a gene is
mediated by its enceoded proteins, which after their synthesis moves to the
desired cellular compartment where they function (Emanuelsson, Heijne
2001). Therefore, the subcellular localization of proteins encoded by
duplicated genes is also associated with their functional diversification
(Byun-McKay, Geeta 2007; Marques et al. 2008). Our study revealed a higher
subcellular protein colocalization in SSD pairs (Figure 4.3, Table 1), indicating
that the human WGD-pairs also diverge more in their protein subcellular
localization. Thus, our study with human SSDs and WGDs revealed an exactly
opposite trend revealed by the earlier studies with yeast SSDs and WGDs,
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where SSD pairs were more divergent in terms of both function and

subcellular localization.

In contrast to the lower unicellular eukaryotes, higher eukaryotes possessing
tissue-level organization can regulate the duplicated gene copies at their
gene expression level among different tissues (Li, Yang, Gu 2005; Ganko,
Meyers, Vision 2007; Leach et al. 2007; Ha, Kim, Chen 2009; Li et al. 2009;
Qian et al 2010). For example, after gene duplication, the functionally
redundant paralogs may adapt themselves to express differentially in
different tissues, so that the overall expression breadth (number of tissues
where a gene is expressed) of the gene prior to duplication is maintained.
The spatial variation of gene expression, therefore, can be treated as a
possible mechanism associated to the maintenance of duplicated pairs in
multicellular organisms. We used the high-throughput RNA-seq gene
expression data of human to compare the spatial variation in gene

expression patterns of SSD- and WGD-pairs.

We observed that the human SSD pairs are coexpressed in the same tissue
more often than the WGD pairs, which tend to express in different tissues
(Figure 4.4). This reveals that human whole-genome duplicate pairs are not
only adapted to divergent functions or new locations, but also expressed in

different tissues.

Therefore, from these results, it is quite clear that human WGD-pairs are
more divergent in their function, subcellular localization and gene
expression than the SSD pairs. However, as humans are very distantly related
to vertebrate whole-genome duplication event (~530 Mya), our results may
reflect the outcome of more than 500 million years of evolution of WGD

genes. Thus, we hypothesise that our results demonstrate the long-term
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evolutionary outcome of genes originating via WGD, with those generated via
SSD. However, this may not be true as the results may be due to an
enrichment of recent SSD-pairs in our dataset, which are usually functionally
more similar. Thus, we classified the SSD-pairs in two groups- young-SSD
pairs and old-SSD pairs based on their phylostratum rank (Neme, Tautz
2013). The proportion of young SSDs in our dataset was found to be very
low, suggesting they have no significant effect on our results. For further
confirmation, we compared the old-SSD and the young-SSD separately with
the WGD genes and observed that both the old- and young-SSDs show
differences with WGDs (Figure 4.5). This suggests that the age of SSD genes
have no significant influence on the differences in evolutionary genomic
attributes of human SSD- and WGD-genes. Also, among the 0ld-SSD and the
WGDs, WGD-pairs diverge themselves more than the old-SSDs, despite both

being evolutionarily older counterparts of the genome.

To further strengthen our hypothesis, we used Xenopus tropicalis as a control
and compared the evolutionary genomic features of Xenopus orthologs of
human small-scale and whole-genome duplicates. Interestingly, both the SSD-
and WGD-pairs shows high functional similarity value in Xenopus, with very
little or no significant difference between the two classes of duplicates in
their functional similarity and subcellular colocalization (Figure 4.6). We
could not analyze the gene expression correlation between the paralogous
pairs in Xenopus, due to unavailability of data, but our results are suffuicient
to reveal that although initially after the vertebrate two round of whole-
genome duplication event both the SSD and WGD genes were similar in their
attributes, but during the course of evolution, the WGD genes established
themselves as more suitable candidates to diverge themselves to perform
new functions.
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However, as the functional redundancy decreases and the duplicated gene
copies become diversified enough to separate functionally, their evolutionary
rate reduces and they become evolutionarily conserved to maintain the
function (Jordan, Wolf, Koonin 2004). Thus we were curious to observe the
evolutionary rate differences between human SSD and WGD genes. Our
results revealed a slower evolutionary rate and therefore, higher evolutionary
conservation in human WGD genes compared to the SSD counterparts. Thus
our study furnish a clear indication that the human WGDs have adapted to
new locations, serves new functions and lost their redundancy, eventually
became slow evolving to maintain themselves (Figure 4.7). Additionally, it
also suggests that the functions adopted by the WGDs are also evolutionarily
conserved. Furthermore, to obtain a detailed insight into the functional roles
played by SSDs and WGDs in humans and the importance of their functions,
we explored the multifunctionality, gene essentiality and the disease-
association of genes within these two groups. We obtained a higher protein
multifunctionality in WGDs, indicated by their association with more
numbers of unique Gene Ontology biological process terms and more
functional domains within their proteins’ structure (Figure 4.8). In the next
part, we compared the functional importance of these duplicates. We studied
the proportion of essential genes, as they comprise the most important part
of the genome. Although the human essential genes show a significantly
higher enrichment in duplicates than in singletons (Acharya et al. 2015), but
the difference in the enrichment of essential genes within SSD and WGD is
still not clear. Additionally, considering the disease-associated genes,
duplicates contains a higher proportion of such genes than the singletons

(Dickerson, Robertson 2012).
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When we compared the functional importance of human SSD and WGD
genes, by studying the proportion of essential genes and disease-associated
genes. Our results showed a significantly higher enrichment of essential
genes among WGD genes. Additionally, considering both monogenic and
polygenic disease genes together, we found a significant higher enrichment
of disease-associated genes within WGDs, a result consistent with earlier
studies with monogenic (Mendelian) disease genes only (Makino, McLysaght
2010). These results suggest a higher involvement of functionally important
genes with the WGDs. Thus, our study provide a clear demonstration of the
fate of the human whole genome duplicates originated during vertebrate
whole genome duplication event representing the adaptation of these WGD
genes to serve more functions, and functions that are crucial and vital for
human survival and may cause disease, sterility, and lethality upon

disruption.
4.5. Conclusions:

In this study, we compared the human small-scale and whole-genome
duplicates based on their genomic and evolutionary attributes. Our results
suggest that the human duplicates originated from whole-genome
duplication (WGDs) during vertebrate evolution show various differences
with those originating at a smaller-scale (SSDs). However, these differences
between human SSDs and WGDs are exactly opposite to that in yeast. We
hypothesised that such a trend reflects the preservation of WGD genes in
long evolutionary time span, as the human WGDs as human WGDs have
originated from two rounds of whole-genome duplication during early
vertebrate evolution. However, the human SSDs are also enriched in ancient

genes in our dataset. Therefore, both these duplicates have faced many
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evolutionary challenges. But in course of evolution, WGDs diverge
significantly more in function, location and expression, as suggested by our
study. The human WGDs are associated with more functions and perform
crucial roles than the SSD genes. Thus, the WGDs cause more profound
effects upon mutations, for the inability of their paralogous genes to mask

the fitness effect of gene-deletion.

Therefore, our study represents long-term evolutionary fates of whole-
genome duplication, in contrast to their immediate effect on the organism, as
shown by the early studies with yeast (Guan, Dunham, Troyanskaya 2007;

Hakes et al. 2007; Fares et al. 2013).
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Summary and General Conclusion.

This thesis focus on the importance of human gene duplication and
duplicated genes generated by such duplications in human genome
evolution. Gene duplication is a genetic mutation that generates new
gene copies capable of developing new function upon the act of
mutations that modify the gene sequence. For this reason, gene
duplication is considered as the major evolutionary force guiding
genome and organism evolution. However, duplication of a gene often
leads to the generation of ‘useless duplicates’ with that are
nonfunctional and remain as the ‘debris’ within the genome, increasing
genomic burden. Occasionally, duplicates are retained as backup copies,
particularly when the increase in gene product is beneficial to the
organism. Such duplicates are retained within the genome and may
subsequently diversify themselves functionally, after acquiring
mutations required for such functional changes. More precisely,
duplication of a gene leads to the relaxation of purifying selection on
that gene and as a consequence, both the duplicated copies start
accumulating mutations. This impedes the backup capacity of
duplicated copy, but in turn may lead to the generation of new
functions. Also, such a relaxation of purifying selection after gene

duplication may harm the genes associated with critical functions

\essential for survival. /
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In our study, we first focused on the duplication of human genes that are
essential for human survival and/or reproduction. These genes represent the
most vital portion of the human genome. Previous studies with the essential
genes of model organisms revealed that these genes usually ‘avoid’
duplication, and such a trend is consistent across diverse group of
organisms like Fungi (Yeast), Plants (Arabidopsis), Nematodes
(Caenorhabditis) and Rodent mammals (Mouse). The essential genes usually
remain highly connected in protein-protein interaction network. Thus, their
duplication creates a dosage imbalance in the network, as the duplicated
gene produces more protein products relative to its interacting partners in
the PPI network. However, duplication of such genes associated with
essential functions provides increased robustness against deleterious
mutations and thus, maintaining essential genes as duplicates lead to
insignificant fitness reduction of the organism upon the accumulation of
deleterious mutation(s) on those genes. Thus, for the organisms that
maintain essential genes as duplicates will have the upper hand against gene

deletion, but the PPI network should kept dosage-balanced.

Our study reveals a higher proportion of essential genes in human
duplicated genes, a trend that is different from a wide-range of organisms.
The in-depth functional analysis reveals that these human essential duplicate
pairs are functionally more similar to each other than those in the most
popular mammalian mouse model. Such duplicates are associated with a
higher number of potential micro-RNA target sites, indicating they may
regulate their dosage-balance in the protein-protein interaction network.
Furthermore, the human essential duplicates are evolutionarily more

conserved than that in mouse, revealing that they have a higher efficiency to
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act as backup copies, leading to increased robustness against deleterious

mutation in humans.

We are the first to compare the functional genomic attributes of human
small-scale and whole-genome duplicates (SSDs and WGDs, respectively). The
WGDs present within the human genome had their origin long time ago in
evolutionary scale, during the evolution of early vertebrates (~530 Mya).
However, such WGDs have also occurred in different lineages, being most
predominant in the evolution of land plants. Duplicated genes originated
during the WGD event in the yeast genome (~150 Mya) were characterized
and compared to the yeast SSDs. However, yeast WGD-event has occurred
quite recently in evolutionary time scale compared to that in the vertebrates.
Thus, we hypothesized that vertebrate WGD event must have played an
important role in their diversification into such a variety of organisms. Our
comparative analysis of human SSDs and WGDs revealed a lot of differences
in their evolutionary genomic properties. The human WGDs originated
during vertebrate WGD event are adapted to new functions and new
locations, a trend being different from that in yeast. Such human WGDs
performs more functions and are engaged in the most vital functions than
the SSDs. They are also evolutionarily conserved, indicating their functional
significance in humans. Together, our results establish human WGDs as the
most important counterparts, that plays crucial roles within the human
genome. Thus, our studies focus on the significance of human gene
duplication and reveal the roles of duplicated copies generated by this
process in human evolution, with a detailed account of their functional

association and the importance of such functions.
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Abstract

Gene duplication is one of the major driving forces shaping genome and organism evolution
and thought to be itself regulated by some intrinsic properties of the gene. Comparing the
essential genes among mouse and human, we observed that the essential genes avoid du-
plication in mouse while prefer to remain duplicated in humans. In this study, we wanted to
explore the reasons behind such differences in gene essentiality by cross-species compari-
son of human and mouse. Moreover, we examined essential genes that are duplicated in
humans are functionally more redundant than that in mouse. The proportion of paralog
pseudogenization of essential genes is higher in mouse than that of humans. These dupli-
cates of essential genes are under stringent dosage regulation in human than in mouse. We
also observed slower evolutionary rate in the paralogs of human essential genes than the
mouse counterpart. Together, these results clearly indicate that human essential genes are
retained as duplicates to serve as backed up copies that may shield themselves from
harmful mutations.

Introduction

Gene duplication was thought to be one of the major driving factors stimulating genome and
organism evolution [1-4], as it provides raw genetic materials for structural and functional
modification and at the same time conserves the parental function. Although, gene duplication
is not always beneficial, and most duplicates become subsequently inactivated or pseudogen-
ized in the genome [4], it may have many implications in an organism’s life. For example, the
duplicates may be maintained in the genome for its immediate benefit to the organism, like in-
creased gene dosage [5] or serve as backup copies to restore the function if the original one be-
comes deleted [6,7]. Apart from this, the duplicates may undergo modifications to take up
novel functions, i.e. neofunctionalization [4], or they may share their function after comple-
mentary degenerative mutations, i.e. subfunctionalization [8,9]. The pattern of gene duplica-
tion may vary between species and also across different groups of genes within the same
species. Several factors contributing gene duplication has been observed till date in diverse or-
ganisms like protein connectivity and protein interaction network [10-12], protein complexity
[13,14], gene retention and sequence divergence [15], dosage balance [16] and nevertheless,
gene essentiality [17-19].
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Essential genes are indispensable to an organism and cause severe reduction in its fitness
like sterility or lethality upon deletion [20]. These genes are mainly associated with important
biological functions. However, many expressed genes performing such functions are consid-
ered to be nonessential, as their deletion can be compensated by other genes having similar or
identical functions and expression [21]. Gene duplication is an important mechanism for such
functional redundancy to occur [4]. Now, there may be two kinds of possibilities for essential
genes to prefer or avoid the course of gene duplication. First, essential genes are required to be-
come duplicated for providing backup copies that could shield themselves from any harmful
mutations; secondly from evolutionary standpoint, essential genes may prefer to stay away
from gene duplication since ectopic recombination and replication driven gene duplication
may increase the chances of mutational load which is not at all acceptable for essential genes
for being the most conserved gene-group [22,23].

Gene essentiality was widely studied across model organisms and shown to bear a complex
relationship with gene duplication [19]. In lower eukaryotes like yeast, a higher proportion of
essential genes were observed in singletons than in duplicates [7]. However, studies with
mouse showed that the proportion of essential genes in duplicates are comparable to that in
singletons [10,18]. Additionally, two follow-up studies with mouse also report that the propor-
tion of essential genes is higher in singletons than in duplicates [21,24].

Till date, all the studies regarding essential genes were carried in yeast and mouse due to un-
availability of human gene essentiality data. In a previous study, researchers attempted to ex-
plore the properties of human orthologs of mouse essential genes [25]. However, considering
such human orthologs as essential may not be accurate [26]. Taking advantage of the Online
Gene Essentiality (OGEE) database that represents a valuable resource of human and mouse
essential genes, we performed a comprehensive analysis comparing duplication pattern of es-
sential genes in human and mouse. We noticed that in mouse, the essential genes prefer to re-
main as singleton whereas the trend is reverse for human, which is unexplored so far. We have
also explored the underlying reasons and the benefits of maintaining essential genes as dupli-
cates in humans.

Materials and Methods
Gene Essentiality and Gene Duplication

Gene essentiality and duplication of human (Homo sapiens) and mouse (Mus musculus) were

obtained from the Online Gene Essentiality (OGEE) database (http://ogeedb.embl.de) [27] (S1
Dataset). The paralog lists for human and mouse essential genes were provided by the authors
of OGEE database [27] (S2 Dataset).

Developmental Genes

The developmental genes for mouse and human were obtained from Online Gene Essentiality
(OGEE) database [27] (S1 Dataset). Here, a gene is considered as developmental if they are as-
sociated with one of the two GO terms: GO:0007275 (multicellular organismal development)
and GO:0030154 (cell differentiation) or their daughter terms, and others as non-developmen-
tal, a method adapted by Makino et al. 2009 [19].

Phyletic Age and Overall Proportion of Essentiality

Phyletic origin of a gene can be defined as the most distance group of organisms where the ho-
mologs (orthologs) of that gene are present. The phyletic age of human and mouse genes was
obtained from the Online Gene Essentiality (OGEE) database [27], where the authors used the
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phyletic age prediction algorithm described by Wolf et al. [28]. The genes were divided in
seven classes according to their evolutionary origin, namely 0 (not assigned), 1 (Mammalia), 2
(Chordata), 3 (Metazoa), 4 (Fungi/Metazoa group), 5 (Eukaryota) and 6 (cellular organisms).
We discarded the first group in which the phyletic age was not assigned and selected the rest
from mouse and human OGEE genes. We obtained the final mouse and human data with gene
essentiality, gene duplication and phyletic age information containing 5869 and 18400 genes,
respectively. We divided the human and mouse OGEE genes into two groups depending on
their phyletic age: the ‘old duplicates’ (containing three older classes) and ‘new duplicates’
(containing the rest three classes) in both human and mouse (S1 Dataset). From this data, we
calculated the overall proportion of essential genes in singletons and duplicates for both species
as a weighted average using this formula [21]:

— old oung
PE - f;ﬂd X PE +fyaung X p};

Where, fo1q and f,oung are the fraction of old and young genes contained in the gene group and
the P4 and P;*™ are proportion of essential genes in old and young counterparts. Using this
formula, we calculated the proportion of essential genes in singleton and duplicates for both
species irrespective of their age bias.

Functional Distance

The functional distance for the human and mouse essential genes carried by the Gene Ontology
(GO) annotations was calculated using the GO domain molecular function for essential genes
and their paralogous copies of corresponding species from Ensembl 71 biomart interface
(http://www.ensembl.org/biomart/martview) [29]. The GO terms for each human and mouse
essential gene and the corresponding paralogous genes were calculated separately. Using the
Czekanowski—Dice distance formula [30] mentioned below, we calculated the functional di-
vergence for each human and mouse essential genes with their paralogous counterparts.

Functional distance (i, j)

Number of Terms(i)ATerms(j)
[Number of (Terms(i) U Terms(j)) + Number of (Terms(i) N Terms(j))]

In which, i and j denote a gene and its paralogous gene within a species. Terms (i) and
Terms (j) are the lists of the GO terms for individual genes. ‘U’ and ‘N’ denotes the nonredun-
dant and common GO id count, respectively, of the two genes. ‘A’ is the symmetrical difference
between the GO term sets of two genes, i.e. ‘(U-N)’.

Although the Czekanowski-Dice distance formula is the most commonly used method for
calculation of functional distance, it is sensitive to the number of GO terms per gene and there-
fore may be erroneous for cross-species comparison. Therefore, to compare the functional dis-
tance between mouse and human essential genes using the Czekanowski-Dice formula, we
must consider the number of GO terms associated with the genes. To ensure that, we binned
our functional distance data of the two species in three groups: Group A (with GO terms 1 to 4;
Nhuman = 367, Nimouse = 773), Group B (with GO terms 5 to 8; Npuman = 343, Niouse = 485) and
Group C (with GO terms > 8; Npyman = 244, Niouse = 278) and compared the functional dis-
tance of human and mouse essential genes within each group.

Pseudogenization

Mouse and human pseudogenes were obtained from the biomart interface of ensemble 71
(http://www.ensembl.org/biomart/martview) [29]. For both the species, we searched for the
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gene IDs for which the gene biotype contains the term ‘pseudogene’. This includes pseudogene,
IG-V-pseudogene, TR-V-pseudogene, polymorphic pseudogene, TR-J-pseudogene, IG-C-
pseudogene, IG-J-pseudogene and processed pseudogene. We calculated the proportion of
paralog pseudogenization by considering only the duplicated essential genes with at least one
pseudogenized paralog. The proportion of paralog pseudogenization was calculated by the
ratio of the number of pseudogenized paralogs and the total number of paralogs. The mouse
and human essential genes with the biotype of the paralog are provided in S3 Dataset.

Micro-RNA Target Sites

Average micro-RNA target sites for human and mouse were obtained from TargetScan Release
6.2 (http://www.targetscan.org) [31]. For each of the human and mouse essential genes having
known paralogs, we made individual sets comprising the gene and all of its paralogs. We calcu-
lated the mean micro-RNA target sites of each of such sets for the two species. We considered
the mean value of all sets within a species to obtain the mean micro-RNA target sites for

that species.

Evolutionary Rate

Evolutionary rates of the human and mouse genes were calculated as the ratio of nonsynon-
ymous nucleotide substitution per nonsynonymous sites (AN) and synonymous nucleotide
substitution per synonymous sites (dS), from the biomart interface of ensemble 71 (http://
www.ensembl.org/biomart/martview) [29], using rat (Rattus norvegicus) as an outgroup. We
obtained the dN and dS of human and mouse genes from their corresponding one-to-one rat
orthologs. We compared the dN/dS ratios of nonredundant sets of human and mouse essential
genes’ paralogs.

Statistical Analyses

Statistical analyses of the entire work were performed using SPSS v.13 and in house PERL
Script. Mann-Whitney U test was used in SPSS to compare the mean values of different vari-
ables between two classes of genes. We used our in house PERL Script to perform two-sample
Z-test for comparing relative proportions of a variable between two gene groups.

Results and Discussions

We compared the duplication of human and mouse essential genes and noticed that the ten-
dency of essential genes to remain as duplicate copy varies between human and mouse. In
human, the proportion of essential genes is higher among the duplicated subsets compared to
the singleton genes; whereas in mouse, the reverse was observed. We observed that in mouse
among 2098 singleton genes, 994 genes are essential (47.38%) and among 3771 duplicated
genes, 1563 genes are essential (41.45%) [Z = 4.391, confidence level 99%; P<0.0001, two sam-
ple Z-test] whereas, in humans, among 7563 singleton genes, 486 genes exist as essential
(6.43%) and among 10837 duplicated genes, 984 are essential (9.08%) [Z = —6.523, confidence
level 99%; P<0.0001, two sample Z-test]. The overall proportion of essentiality is higher in
mouse, which may be due to the fidelity of the methods applied to detect essential genes [27] or
the unavailability of the complete essentiality data, but within species (where the same method
is used to detect essentiality), gene essentiality should contribute equally among singletons and
duplicates, which is however, not the case, as our observations indicate a higher probability of
retaining the essential genes as duplicates in humans but not in mouse. A previous study re-
ported that developmental genes are more essential than non-developmental ones [19] and
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their abundance may result higher essentiality for a particular gene group relative to other,
which led us to hypothesise that the overrepresentation of developmental genes in a particular
gene group may influence the overall trend. To explore if this is the case in our experiment, we
discarded the developmental genes and calculated the proportion of essential genes in singleton
and duplicate for human and mouse non-developmental genes only (see materials and meth-
ods for details). Here also, we obtained a similar trend (Table 1), which indicates that the re-
sults are not influenced by developmental genes. Therefore, we continued our study including
both the developmental and nondevelopmental mouse and human genes.

Another possible bias in our dataset may arise due to the age of the duplicates. Previous
studies showed that the genes originated from old duplications are more likely to be essential
than singletons [24]. Therefore, the age of genes have an influence in gene essentiality, which
may lead to overestimation of human essential genes as duplicates in our dataset as we have
considered duplicates as the genes having at least one paralogous copy, no matter how ancient
it is. This bias was corrected by considering the phyletic age of the genes to calculate the overall
proportion of essentiality [21] (see materials and methods) in singleton and duplicated mouse
and human genes. We did not consider the duplication age (the origin of most recent duplica-
tion event) as our dataset also contains singletons and hence, phyletic age will be a more suit-
able measure. After correcting the age bias, we still obtained the same trend in proportion of
essential genes in singletons and duplicates in both species (Table 2).

Our study contradicted the previous study of Liao and Zhang [18] which entails that mouse
singleton and duplicate genes have an equal proportion of essential genes. This may result
from the difference in essential gene collection procedure followed in Mouse Genome Infor-
matics (MGI) which they used and OGEE databases which we have used. However, our result
of mouse genes essentiality is consistent with that shown by two more recent studies [21,24].
Thus, with no further controversy, we wanted to comprehend why essential genes prefer to re-
main as duplicates in humans. Firstly, we contemplated that human genes may be maintained
to keep an extra copy for functional compensation. However, the higher connectivity (Hub like
nature) of essential genes which was revealed in many previous studies [32-35] demands a
stringent regulation, in order to maintain the whole protein interaction network dosage-bal-
anced. Moreover, duplication leading to the increase in dosage may not be favourable and, as a
result, duplicates must either be diversified [36] or kept silent (dosage-balanced) [16].

To investigate whether the diversification supports the fixation of duplicate copies of essen-
tial genes in the human genome, or the duplicates are maintained as a backup system under
stringent dosage-regulatory mechanism, we compared the essential genes and their paralogs
between mouse and humans.

Firstly, we wanted to explore if the essential genes are duplicated for becoming functionally
diversified and fixed in the genome. For this, we considered GO annotations for each human
and mouse essential genes and their corresponding paralogous copies from Ensembl 71 bio-
mart interface [29] for the GO domain Molecular function. Using the Czekanowski—Dice dis-
tance formula [30] (see materials and methods), we have obtained a significantly lower (P =
3.73x10°°, Mann-Whitney U test) functional distance value in human duplicated essential
genes (Average functional distance = 0.340, N = 954) than in mouse duplicated essential genes
(Average functional distance = 0.385, N = 1536). However, the Czekanowski—Dice distance
formula we used here is sensitive to the number of go terms associated with a gene, which may
vary from species to species. Therefore, for an unbiased cross-species comparison of functional
distance, we binned our dataset into three groups containing according to their go id count
(see materials and methods). We observed a significantly lower functional distance in human
essential genes than the mouse counterparts in all three groups [Fig. 1], suggesting a tendency
of retaining the human duplicated copies of essential genes per se as backup copies.
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Table 1. Proportion of essential genes among singleton and duplicates of mouse and human non-developmental genes.

Species Gene
group
Mouse (Mus Singleton
musculus) Duplicates
Human (Homo Singleton
sapiens) Duplicates

doi:10.1371/journal.pone.0120784.t001

Total Essential Proportion of essential Z-score and P value

genes genes genes

1237 462 37.348 Z =5.0323 (Confidence level 99%) P
2301 669 29.074 <0.0001

6347 332 5.231 Z = -3.7168 (Confidence level 99%) P =
8581 575 6.701 0.0002

Although we observed that human essential duplicates are functionally less diverged than
mouse, we were curious to understand the occurrence of pseudogenized paralogs among essen-
tial genes of both species. As our main dataset contains essential genes of human and mouse,
no occurrence of pseudogene was observed. However, among the paralogs, we did not find any
significant difference between mouse (0.82%) and human (0.50%)(Z = -1.584, P = 1.13x107%,
two sample Z-test), which may be due to the low proportion of pseudogene occurrence in both
species (S3 Dataset). The low proportions of pseudogenes in our mouse and human essential
genes’ paralogs are normal as we are considering paralogs of the genes with crucial functions.
However, when we considered the proportion of paralog pseudogenization for each human
and mouse essential duplicate genes having at least one pseudogenized paralog (see materials
and methods), the proportion of paralog pseudogenization were found to be lower in human
essential genes than in the mouse counterpart (Proportion of paralog pseudogenization in
mouse = 0.178, Proportion of paralog pseudogenization in human = 0.048; P = 1.44x107,
Mann-Whitney U test, Ny ouse = 17, Nhuman = 63). This result suggests that mouse essential
genes’ paralogs can become pseudogenized more easily. In other words, human essential genes
retain their functionality more readily, which in turn can help them to serve as functional back-
up copies, as we have previously shown that they are functionally more similar to their
ancestral genes.

The human essential genes in our study were observed to show lower functional divergence.
Thus, we hypothesize that the essential gene duplicates are functionally redundant and they
may be maintained as backup copies. However, the maintenance of newly synthesized dupli-
cates is very crucial and often performed by micro-RNA mediated post-transcriptional regula-
tion, which may give support to the backed up essential genes by reducing their expression
[37]. Therefore, to measure the ability to maintain the backed up duplicates, we measured the
average micro-RNA target sites for mouse and human essential genes and their duplicates (see
materials and methods for details). Consistent with our expectation, we observed a significantly
higher (P = 3.35x10"% Mann-Whitney U test) micro-RNA target sites in duplicated essential
genes of human (Mean micro-RNA count 19.15, Number of sets = 742) than in mouse (Mean
micro-RNA count 15.82, Number of sets = 1202), suggesting the robust regulation by micro-

Table 2. Proportion of essential genes as weighted average among singleton and duplicates of mouse and human.

Species Gene
group
Mouse (Mus Singleton
musculus) Duplicate
Human (Homo Singleton
sapiens) Duplicate

doi:10.1371/journal.pone.0120784.t1002

Total
genes
2098
3771
7563
10837

Proportion of essential genes as weighted average (Pg = foig X Z-score and P value
PEoId + fyoung x PEyoung)

47.379 Z = —4.392 (Confidence level 99%)
41.448 P <0.0001
6.426 Z = —-6.535 (Confidence level 99%)
9.081 P <0.0001
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Fig 1. Average functional distance between mouse and human essential genes among three groups according to their count of GO terms. Group A
with GO count 1-4, Group B with GO count 5-8 and Group C with GO count >8 (error bars indicate standard errors).

doi:10.1371/journal.pone.0120784.g001

RNAs after the duplication of essential genes enables humans to maintain the
redundant copies.

We observed the human essential duplicate genes mostly prefer to remain functionally re-
dundant and can be maintained as backup copies, being able to escape the dosage imbalance.
However, as the gene duplication is the mean of providing raw materials for genome evolution
[4], we were interested in understanding the selection pressure on these backed up copies.
Now, as the essential duplicates are functionally less divergent and dosage-balanced, their para-
logs must be evolutionarily more conserved, in order to serve as backup copies upon future
needs. We measured the evolutionary rates of human and mouse duplicated essential genes’
paralogs, in terms of the ratio of nonsynonymous substitution rates per nonsynonymous sites
(dN) and synonymous substitution rates per synonymous sites (dS) [see materials and meth-
ods] and obtained a significantly lower evolutionary rate of human counterpart (AN/dSyyman =
0.101, dN/dS 0use = 0.128, P = 2.53x107°, Mann Whitney U test, Niouse = 2931, Nhuman =
1651), indicated by their lower dN/dS ratio [Fig. 2]. This indicates that the redundant copies of
human essential duplicates are evolutionarily conserved and may serve as backup copies upon
future requirement, having the potential to increase the gene deletion fitness effect.
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Fig 2. Mean dN/dS value of mouse and human essential genes’ paralogs (error bars indicate standard
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doi:10.1371/journal.pone.0120784.g002

Conclusion

Gene duplication generates multiple copies of a gene that are initially functionally redundant,
and their retention demands either functional diversification or regulation of the protein dos-
age. In this study we showed that human essential genes are mostly retained as duplicates, a
trend which is different from mouse, with the duplicated copies being functionally more redun-
dant in humans. Consistent with this, the evolutionary rate of these redundant human paralogs
of essential genes is lower than that in mouse. We showed that these redundant human dupli-
cates can be maintained due to the presence of more efficient dosage-regulation. Our study
sheds light on the importance of the backup copies to restore the fitness effect of gene deletion,
thereby increasing the fitness in humans. This study opens the future direction for in depth
analysis of duplicated essential genes and their role in the human protein evolution.

Supporting Information

S1 Dataset. Mouse and Human genes used in this study. This dataset contains the essentiali-
ty, duplicability, involvement in development and phyletic age data of mouse and

human genes.

(XLSX)

$2 Dataset. The duplicated pairs of Mouse and Human genes. This dataset contains the du-
plicate pairs for mouse and human genes used for functional distance measurement.
(XLSX)
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S3 Dataset. The pseudogenization status of the paralogs of Mouse and Human essential du-
plicate genes. This dataset contains the pseudogene annotation for all mouse and human
genes under study.

(XLSX)
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Abstract

Background: Gene duplication is a genetic mutation that creates functionally redundant gene copies that are
initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene
duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast
revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less
divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored
the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human
duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution.

Results: We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and
genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to
be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes
than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more
divergent in their gene expression profile, have higher multifunctionality and are more often associated with
disease, and are evolutionarily more conserved than human SSDs.

Conclusions: Our study suggests that human WGD duplicates are more divergent and entails the adaptation of
WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of

evolution.

Keywords: Small-scale duplication, Whole-genome duplication, Functional divergence, Gene essentiality, Disease

genes, Protein multifunctionality, Evolutionary rate

Background

Gene duplication is a key source for generating new
gene copies from pre-existing ones [1-3]. These
newly-made gene copies are initially functionally re-
dundant and relieved from selective pressure, and
may adapt themselves to new functions [2, 4-6].
Thus, many of the previous studies concluded gene
duplication as the primary guiding force of organism
evolution for providing raw genetic materials for gen-
ome evolution [1, 2, 7]. Although, the retention of
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duplicated genes is not a trouble-free process and
most of the duplicates become nonfunctionalized and/
or lost from the genome [2], whereas others become
fixed within the genome in course of evolution. The
retention of duplicates might be initially favourable
due to circumstances like increased gene dosage ad-
vantage, where the duplication and subsequent in-
crease in the gene product may be advantageous to
the organism [5, 8]. Additionally, gene duplicates may
serve as backup copies capable of functional compen-
sation upon gene deletion [9] and provide increased
genetic robustness against deleterious mutations [10],
but their maintenance requires stringent regulation in
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gene dosage [11, 12] or expression patterns [13-16].
That apart, the duplicates may either diverge at the
subcellular protein localization [17] or share the
ancestral function [18] after complementary degenera-
tive mutations (subfunctionalization) [19] or adapt to
new functions (neofunctionalization) [2]. Furthermore,
there are also subtle differences in the extent of gene
duplication. In most of the cases, duplication involves
a single gene and termed as small-scale duplication
(SSD), whereas, large-scale duplications may involve
many genes, chromosomal segments or even the en-
tire genome, with the latter being known as whole-
genome duplication (WGD) [20]. Although small-scale
duplication can occur at any time and may be
retained in course of evolution, there are a few evi-
dences of whole genome duplication in eukaryotic
organisms, being most common and widely studied in
the evolution of plant genome [21-24]. Many previ-
ous studies highlighted the evidence of an ancient
WGD in the yeast genome [25-27]. Additionally,
evidence of two rounds of whole-genome duplication
was also prominent in the early vertebrate evolution
[28-33], which provides the raw materials for increas-
ing genome and organism complexity and extensive
species diversity [29, 31] and hence, is an important
process in vertebrate evolution [30, 31].

However, as genes’ functions are mainly mediated
by their encoded proteins, which primarily function
with the association of other such proteins [34], the
proper functioning of a gene depends on the stoichio-
metric balance of the proteins participants. The re-
tention of duplicated genes creates a stoichiometric
disparity in the protein-protein interaction network,
with the duplicated genes producing more proteins
than the non-duplicated ones [35-37]. The two extent
of duplication affect their associated protein-interaction
network differentially [20, 38—41]. In WGD, the whole
PPI network becomes simultaneously duplicated, and
the stoichiometric balance of the participant proteins
remains the same; whereas in SSD, the duplicated gene
tends to form more protein in contrast to the non-
duplicated interacting partners, thereby creating an
imbalance in the whole PPI network. Therefore, in
general, whole-genome duplicates are expected to be
retained intact within the genome [39].

Most of the studies highlighting gene duplication
compared the attributes of duplicated genes with
that of singletons [10, 42, 43]. This raised an im-
portant question —are all duplicates equal in their
genomic and evolutionary characteristics? With the
well-established gene duplication data in yeast, it
became possible to identify the duplicates originated
from whole-genome duplication as well as those
from small-scale duplication [25]. Comparing these
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two distinct duplicate groups, researchers observed
quantifiable differences in yeast [20, 41, 44]. They
found that the yeast WGDs are functionally more
similar than SSD genes, which is independent of their
sequence similarity [20, 44]. Additionally, yeast SSDs also
diverge more at their subcellular localization than the
WGDs [41]. Also, yeast SSD genes were found to
contain a higher proportion of essential genes than
WGD genes [20, 44].

The occurrence of two rounds of whole-genome dupli-
cation in early vertebrate lineage [28—-33] and the subse-
quent detection of traces of these whole-genome
duplicates in human [32, 39, 45] lead us to differentiate
the genomic and evolutionary attributes of human
small-scale and whole-genome duplicates. As the human
WGDs stem from the ancient two rounds of genome
duplication that had occurred in early vertebrates, it can
be stated that these human duplicates became subjected
to more evolutionary pressure due to their long term
evolutionary exposure than that in yeast. Therefore,
our study will explore the relative importance and the
long-term fate of these whole-genome duplicates that
had originated during the early vertebrate evolution in
contrast to the duplicates originating spontaneously at
small-scale.

Results

Functional similarity of human SSD and WGD genes

The functional similarities between each pair of hu-
man small-scale and whole-genome duplicates were
calculated using the Gene Ontology (GO) annotation
from the biomart interface of Ensembl (version 77)
[46], using GO domains ‘biological process’ as well
as ‘molecular function’. We obtained a higher
functional similarity in small-scale duplicates than
the whole-genome duplicated group (Table 1). How-
ever, the functional diversification of paralogs is
dependent on their nonsynonymous nucleotide sub-
stitution per nonsynonymous site (dN), and the
whole-genome duplicates tend to have a higher dN
value the small-scale duplicates, for being evolution-
arily more ancient. Therefore, we binned our dataset
according to different dN ranges (nonsynonymous
nucleotide substitution per nonsynonymous site) (see
Materials and methods) and compared the functional
similarity between SSD and WGD duplicate pairs.
This approach is similar to that adopted by Hakes et
al. [20]. We found that SSD duplicate pairs are
functionally more similar than the WGD pairs in
each dN range (Table 1) considering both their
involvement in biological processes and molecular
function (Fig. 1). In other terms, human WGD pairs
were found to be functionally more divergent, inde-
pendent of their sequence divergence.
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Table 1 Differences between the properties of human small-scale and whole-genome duplicate pairs in different dN ranges. Pair
wise two-tailed Mann-Whitney U test were used to compare the means of SSD and WGD pairs within each group

Parameter Database used Overall dN 0.0-0.1 dN 0.1-0.2
Measured SsD WGD P-value ) WGD  P-value ) WGD P-value
Functional Similarity Shared GO Terms ¥= 0710 X=0415 <100x107° X=0734 X=0499 2325x10™% %=0720 X=0476 5925x10 '
between paralogs lior Biological N=14742 N=12022 N=3640 N=414 N=2754 N=1140
rocess
Shared GO Terms ¥=0840 X=0659 <100x10° %=0850 X=0724 6077x10% %=085 X=0706 1075x10"'%*
for Molecular
Function N=18584 N=12392 N=4668 N=410 N=3510 N=1188
Shared Subcellular GO Cellular ¥=0782 X=0541 <100x107° X=0816 ¥X=0579 5341x107° X=0788 <X=0581 5652x107""°
Compartment Component _ _ _ _ _ _
of paralogs N=15248 N=12198 N=3790 N=380 N=2914 N=1162
Gene expression Human Protein %= 0403 X=0193 <100x10° %=0615 X=0254 1558x10°% %X=0414 X=0253 1774x10 %
profile similarity Atlas B B B B B B
between paralogs N=11726 N=13060 N=2588 N=426 N=2758 N=1226
Expression ¥=0450 X=0216 <100x107° X=0508 X=0284 1.032x107° X=0457 X=0280 5953x107>
Atlas N=15404 N=13072 N=3628 N=422 N=3458 N=1220
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Table 1 Differences between the properties of human small-scale and whole-genome duplicate pairs in different dN ranges. Pair
wise two-tailed Mann-Whitney U test were used to compare the means of SSD and WGD pairs within each group (Continued)

Parameter Database used dN 0.2-03 dN 03-04 dN>04
Measured SSD WGD P-value SSD WGD P-value SSD WGD P-value
Functional Similarity Shared GO Terms %= 0657 %=0440 2892x107'%° X=0726 ¥=0413 1397x107%% X=0710 ¥=0391 1983x10"">°
between paralogs fpor Biological N=3328 N=2002 N=4264 N=2192 N=756 N=6274
rocess
Shared GO Terms %= 0810 X=0696 1814x107° ¥=0846 X=0677 4976x107°'"® %=0826 X=0628 5072x107'"
for Molecular
Function N=4300 N=2076 N=5246 N=2250 N=860 N=6468
Shared Subcellular GO Cellular ¥= 0740 X=0541 3344x107"%° %=0781 X=0555 1421x1072"° X=0777 X=0527 1.156x107'%°
Compartment Component _ _ _ _ _ _
of paralogs N=3444 N=2036 N=4356 N=2228 N=744 N=6392
Gene expression Human Protein %= 0307 %=0.191 7331x107? %=0316 ¥=0.190 1131x107* =%x=0322 %=0.179 1308x107"
profile similarity Atlas B _ _ _ _ _
between paralogs N=2834 N=2158 N=3042 N=2366 N=504 N=6884
Expression ¥=0430 X=0216 1377x107'%® %=0420 X=0219 5471x107°° %X=0394 %=0199 5735x107°
Atlas N=3792 N=2166 N=3922 N=2370 N=604 N=6894

Subcellular localization of SSD and WGD pairs

In addition to the functional divergence, insight into
the function of a gene is associated with the location
of its encoded protein within the cell at the sub-
cellular level. Many previous studies reported that
gene duplication and the functional redundancy of
duplicates can often be neutralized at the protein
level by the subcellular protein compartmentalization
[17, 47, 48]. Therefore, we also considered the
subcellular localization of their encoded proteins as
an alternative and/or associated mechanism beside
functional divergence of the duplicated genes. The
localization of the protein can be obtained by using
the Gene Ontology (GO) terms under the GO do-
main ‘Cellular Component’ against its gene identifier.
The shared cellular component between the para-
logous copies of all SSD and WGD genes were
calculated (see Materials and methods). We observed
an overall higher subcellular compartment sharing of
SSD pairs than that of WGD pairs (Table 1). When
we binned our dataset according to different dN
ranges as mentioned previously, the trend remains
the same for each dN range (Table 1, Fig. 2), which
indicates that the SSD genes are more often co-
localized, and WGD genes are significantly more
diverged in their subcellular localization, irrespective
of their sequence divergence.

Gene expression correlation between SSD and WGD pairs
The divergence of duplicated genes and can also
occur at the gene expression levels. Earlier studies
suggested that the gene expression patterns of dupli-
cated pairs often undergo a spatial variation [reviewed
in Li et al. [15]], and this can be considered as a
mechanism for their stable maintenance [13]. There-
fore, it is essential to understand the co-expression of

the paralogs in different tissues after gene duplication,
which is measured using the gene expression profiles
of the paralogous copies in a wide range of normal
tissues [14-16]. We used the high-throughput recent
RNA-seq gene expression data of a wide range of
normal human tissues from the Human Protein Atlas
[49] and Expression Atlas [50] (see Materials and
methods for more details). However, we observed that
human SSD pairs have higher expression profile simi-
larity than the WGD counterparts as a whole, and in
each dN range (Table 1, Fig. 3), suggesting that the
functionally redundant human SSD genes also have
more correlated expression profiles, and WGDs tend
to diverge more in gene expression patterns.

Evolutionary rate of human SSD and WGD genes

The differences of human SSD and WGD pairs in their
evolutionary genomic attributes clearly suggest that the
human WGDs may tend to adapt themselves to new
functions and locations. To investigate this, we used the
one-to-one Mouse as well as Chimpanzee orthologs (see
Materials and methods for details) to compare the
evolutionary rates of human SSD and WGD genes by
the Nonsynonymous nucleotide substitution per nonsy-
nonymous sites (AN) and the %Y ratio, where 'dS' denotes
synonymous nucleotide substitution per synonymous
sites. We obtained a significantly slower evolutionary
rate in WGD genes than the SSD genes for both the
cases (Table 2, Fig. 4), indicating that the human WGD
genes are evolutionarily more conserved, besides being
functionally more diverged than the SSD genes, which is
also supported by a previous study [51] and is consistent
with the idea of the slower evolutionary rate of dupli-
cated genes following their adaptation to new circum-
stances as described in Jordan et al.[43].
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Fig. 1 Functional similarity between human small-scale and whole-genome duplicate pairs. The SSDs are represented in brick red and WGDs are
represented in blue. The red and blue lines represent the mean functional similarity of SSD and WGD pairs, respectively. The black line represents
the mean functional similarity of all human duplicates. The functional similarities between different dN ranges were calculated using both GO
domains. a. Biological Process and b. Molecular Function (For every dN range, P < 0.05). For exact P-values, refer Table 1

dN>04

Multifunctionality of human SSD and WGD genes

The higher probability of functional, sub-cellular
localization and gene expression divergence of hu-
man WGD genes and their evolutionary conservation
suggests that they may be associated with miscellan-
eous functions in contrast to the SSD counterparts.
As our study is based on the functional fates of SSD
and WGD genes, we were interested to observe which
group is associated with more numerous functions. We
used the unique GO biological process terms [52, 53] and
the Pfam domain count [54] as proxies of multifunctional-
ity (see Materials and methods). We observed that WGD-
only genes are associated with more numerous Gene
Ontology terms [Mean number of unique GO terms in
SSD ~ 5, Mean number of unique GO terms in WGD = 10,
P=6707 x 107'%%, Mann Whitney U test, Ngsp = 2569,
Nywgp =5437] [Fig. 5a] and contain significantly more

domains in their encoded proteins [Mean number of Pfam
domains in SSD = 1.61, Mean number of Pfam domains in
WGD =202, P=1.130x10"%, Mann Whitney U test,
Nissp = 3060, Nywgp = 5607] [Fig. 5b] than SSD-only genes.
This suggests that human whole-genome duplicates
are associated with more variety of functions than
human SSD genes.

Gene essentiality between human SSD and WGD genes

So far, the comparison between the human SSD and the
WGD genes showed that the SSD genes tend to diverge
less in their function, subcellular localization, as well as
in gene expression levels in different tissues. Addition-
ally, WGD genes were also found to be evolutionarily
more conserved and were adapted to new functions. But
the importance of such functions from organismal
perspective also plays a crucial role to get the whole
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Fig. 2 Subcellular co-localization between human small-scale and whole-genome duplicate pairs. The SSDs are represented in brick red and
WGDs are represented in blue. The red and blue lines represent the mean functional similarity of SSD and WGD pairs, respectively. The black line
represents the mean functional similarity of all human duplicates (For every dN range, P < 0.05). For exact P-values, see Table 1

picture. The importance of a gene can be measured in
terms of gene essentiality. We used the Online GEne Es-
sentiality (OGEE) Database [55] to obtain human
essential genes [56] and observed a significantly higher
proportion of essential genes among the WGD genes
[Proportion of essential genes in SSD genes =4.601 %,
Nssp = 2692; Proportion of essential genes in WGD
genes = 11.344 %, Nygp =5730] [Z=-9.99, confidence
level 99 %; P<1.00 x 107%, two sample Z-test]. In other
words, a greater portion of WGD genes shows lethality
or sterility upon deletion than SSD genes, due to the
absence of redundant paralogs in the former group.

Disease association of human SSD and WGD genes

Like gene essentiality, another important factor contrib-
uting to the importance of a gene in the organism is its
disease association. It was previously hypothesised that
gene duplication creates additional gene copies, and the
increased functional redundancy can reduce the probability
of disease formation by functional restoration upon gene
deletion [57-59]. Therefore, the disease genes should re-
main as singletons [60]. More recently, studies linking gene
duplication with disease hypothesise that duplication in-
crease genetic redundancy, which in turn prefers accumula-
tion of disease-associated mutations on the duplicates and
hence, the duplicates may be more disease prone than the
singletons [61]. Works with Mendelian disease genes re-
ported their association with WGD genes [39, 62]. For our
study, we considered all human disease associated genes
from the Human Gene Mutation Database (HGMD) [63],
which contains both Mendelian (monogenic) and complex
(polygenic) disease genes. We observed that the proportion
of disease genes is much higher among genes originating
from whole-genome duplication [Proportion of disease
genes in WGD genes = 61.46 %, Nywgp = 5908]; than the
small-scale duplicates [Proportion of disease genes in

SSD genes =27.89 %, Nssp = 3478] [Z = -31.420, confi-
dence level 99 %; P<1.00x107% two sample Z-test].
This suggests that the reduction of functional redun-
dancy in WGD genes increases disease susceptibility,
and the increased ability of functional restoration
reduce disease association of SSD genes.

Discussions

Gene duplication is the major source of genetic novelty
that brings about genomic evolution. The term ‘genetic
novelty’ comprise the generation of new genes from the
pre-existing ones by mutation. Genetic mutation creates
structural changes within the DNA which may lead to
changes in the protein structure as well as its function.
Although initially the duplicates are functionally redun-
dant, they may either diverge or be maintained as
backup copies during the course of evolution [2, 7, 64].
Recent studies with yeast confirmed that the whole-
genome duplication maintains the stoichiometry of
protein interaction network by increasing the dosage of
its every participant, and small-scale duplication creates
a stoichiometric imbalance within the network and
hence, become functionally more divergent to maintain
this balance [20, 38-41]. However, with the increasing
organismal complexity and the genetic robustness, the
whole-genome duplicates may also adapt to new func-
tions, besides maintaining the resilience of protein inter-
action network. It will therefore be very interesting to
explore the long-term fates of whole-genome duplication
by observing human whole-genome duplicates (WGD),
as the identifiable WGDs in human are traced from long
back in the evolutionary scale i.e. from the two rounds
of whole-genome duplication that had occurred in early
vertebrate evolution . Therefore they must be evolved
during the course of evolution from early vertebrates
(like fish) to humans. In this study, we explored the
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are represented in brick red and WGDs are represented in blue. The red and blue lines represent the mean gene expression correlation of SSD
and WGD pairs, respectively. The black line represents the mean of gene expression correlation of all human duplicated gene pairs. (For every dN

0.2-03 dN=03-04 dN>04

on data from a. Human Protein Atlas and b. Expression Atlas. The SSDs

distinguishable differences between human small-scale
and whole-genome duplicates. As we mentioned, the
small-scale (SSD) and whole genome duplicates (WGD)
are not similar in terms of their origin, and therefore in
sequence divergence. So, we binned our datasets accord-
ing to the non-synonymous nucleotide substitutions (dN)
to compare the similarities in evolutionary genomic

Table 2 The evolutionary rate differences between human small-sca

properties between SSD and WGD duplicates independ-
ent of sequence changes that bring changes in amino
acids, and in turn encoded proteins [20]. We observed
that the human SSD and WGD duplicates were not
similar in terms of their evolutionary and genomic
properties. Based on their gene ontology terms, we
found that WGD pairs share less functional similarity

le and whole-genome duplication using mouse (Mus musculus)

and chimpanzee (Pan troglodytes) as outgroups. Two-tailed Mann-Whitney U-Test was used for comparisons between groups

Outgroup Used Gene Group Number of genes ~ Mean dN  P-value Mean Z—AS’ P-value

Mouse (Mus musculus) Human Small-Scale Duplicates 958 0.089 6212x 10718 0.135 2415x 107"2
Human Whole-Genome Duplicates 5689 0.062 0.101

Chimpanzee (Pan troglodytes) ~ Human Small-Scale Duplicates 1611 0012 3.842x 1077 0480 2410x 10776
Human Whole-Genome Duplicates 5309 0.006 0.257
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than the SSD pairs, irrespective of their sequence di-
vergence for both the ‘GO Biological Process’ and
‘GO Molecular Function’ domains (Fig. 1, Table 1).
We observed that these results are not influenced by
duplicates having a large family size by conducting
the same experiments using the closest duplicate pair
only for both SSD and WGD duplicates (Additional
file 1: Figure S1). We also observed that this difference
is not due to the percentage identity based on which the
SSD pairs are obtained, as using more stringent thresholds
for determining SSD pairs also shows the similar trend
(Additional file 1: Figure S2).

As the function of a protein is dependent on its
localization in subcellular compartments [65], another
possible mode of channelizing duplicated genes is in the
subcellular localization of their encoded proteins [17].
Previous reports highlighted that the subcellular adapta-
tion of duplicated proteins is also associated with the
functional diversification [17, 47]. Consistent with this
finding, we also observed a higher subcellular colocaliza-
tion of the proteins encoded by SSD pairs (Table 1, Fig. 2;
Additional file 1: Figure S3). This pattern is also opposite
to that of yeast, where SSD pairs were more divergent
in their subcellular localization, suggesting the human
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whole-genome duplicates have a higher probability of
adapting themselves to new locations than the SSD
counterparts. However, in higher eukaryotes having a
tissue-level organization, gene duplication and the
subsequent functional redundancy between the para-
logs are often regulated by patterning their gene ex-
pression in different tissues [13-16, 66-68]. For
example, the paralogs may express differentially in
different tissues so that the amount of the produced
protein remain at a steady level. Therefore, the spatial
variation of gene expression can be treated as a pos-
sible candidate for the maintenance of duplicated
pairs in humans. But the differences in gene expres-
sion patterns of SSD and WGD duplicated pairs were
still not clear. Using high-throughput RNA-seq gene
expression data of human for at least 27 normal tis-
sues, we observed that the SSD pairs are more often
coexpressed in the same tissue, whereas, WGD pairs
tend to express differentially, ie. in different tissues.
This explains the idea that these WGD duplicates have
not only adapted themselves to divergent functions or
new locations, but also in divergent tissues. This also
suggests a higher probability of specialization of expres-
sion patterns of human WGD pairs than the SSDs having
the same level of sequence divergence (Fig. 3, Table 1).
Using more stringent sequence identity for identifica-
tion of SSDs also shows the similar trend (Additional
file 1: Figure S4). Additionally, using closest paralogs
to normalize the influence of duplicates with large
gene families also shows that the differences between
human SSD and WGD pairs hold true (Additional
file 1: Figure S1). However, as humans are very
distantly related with reference to the vertebrate whole-

genome duplication event, we hypothesised that our
results reflect the long-term evolutionary fates of
genes originating from whole-genome duplication, with
those originating from small-scale duplications. To prove
our hypothesis, we firstly explored the influence of
recent small-scale duplications in our dataset uding
phylostratum rank as the age of SSD genes [69]. We
differentiated the SSD pairs in two groups- young-
SSD pairs and o0ld-SSD pairs (see Additional file 2 for
more details) and reperformed our overall analysis. We
observed that the proportion of young SSDs are very
low in our dataset (Z=79.875, confidence level 99 %;
P<1.00x107% two sample Z-test) and differences
between o0ld-SSD and WGD genes still persist
(Additional file 2: Figure S5). From another perspec-
tive, we used Xenopus tropicalis as a control and
compare the attributes of small-scale and whole-
genome duplicates in xenopus genome. Interestingly,
both the SSD and WGD pairs shows high functional
similarity in xenopus, with very little or no difference
(Additional file 3: Figure S6). This also indicates that
in course of vertebrate evolution, although initially
both the SSD and WGD duplicates were similar in
their attributes, the WGD genes were found to be
more suitable candidates to diverge themselves to
perform novel functions.

The higher functional divergence of human WGD
genes and divergence in their subcellular and tissue-
specific gene expression patterns lead us to investigate
the differences in evolutionary conservation between
SSD and WGD genes. In general, the duplicated genes
tend to evolve faster than singletons just after duplica-
tion due to the increased functional redundancy, and
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subsequently upon its functional specialization, these
duplicates evolve at a slower rate to maintain the func-
tions to which it became adopted [43]. However, the
human WGD genes are identified as the genes originated
at the early vertebrate lineage, where the two rounds of
genome duplication had happened. We observed a slower
evolutionary rate in human WGD genes in contrast to
SSD counterparts, which clearly demonstrates that the
WGD genes has become adapted to new functions and
lost its redundancy, and became slow evolving to
maintain these functions (Fig. 4). The slower evolu-
tionary rates and higher functional divergence of
WGD genes indicate that the functions, to which they
are adopted, are also evolutionarily conserved.

Our hypothesis that human WGDs have adapted to
divergent functions and became evolutionarily conserved
is further strengthened by the analysis of protein mu-
Itifunctionality. The WGD genes and their encoded
proteins tend to have higher multifunctionality than the
SSD genes (Fig. 5), which strengthen our idea of higher
adaptation of human WGD genes to new functions in
contrast to SSD counterparts. However, besides the
functional fate of duplicated genes, we were interested
to comprehend the importance of such functions to the
organism’s life. Therefore, we also considered the
importance of such functions to human. We used the
gene essentiality along with the disease association as
measurements of the vitality of a gene. Firstly we studied
the effect of gene deletion to understand the functional
restoration by the paralogous copy(ies). A recent study
showed that the proportion of essential human gene is
significantly higher in duplicates than in singletons [56].
Additionally, disease-associated genes were found to be
enriched in duplicates [61]. Considering Mendelian
disease genes, researchers also found WGDs to be more
frequently disease-associated [39]. As our data contains
two groups of duplicates which are quite different in
their evolutionary genomic properties, we were curious
to observe the proportion of essential genes and disease-
associated genes (considering both Mendelian and
Complex disease genes) among human SSD and WGD
gene sets. We obtained a higher proportion of essential
genes, as well as disease genes in the whole-genome
duplicate set. Taken together, these results prove that
the WGD genes have adapted themselves to serve
more functions, which are more often crucial for
humans, and may cause disease, sterility or even lethality
upon disruption.

Conclusions

In summary, our results suggest that the human dupli-
cates originated from WGD event in early vertebrate
evolution are quite different from those originating
spontaneously at a smaller-scale (SSD), but these
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differences are exactly opposite to that of yeast. The pos-
sible explanation for this scenario is that the human
WGDs have been traced back from long time ago on the
evolutionary scale, as in humans, we obtained the WGDs
from two rounds of whole-genome duplication occurred
in early vertebrate lineage. Additionally, the SSDs in our
dataset are also enriched in ancient genes. Clearly, it
suggests that both the human SSD and WGD genes have
faced many evolutionary challenges than that in yeast.
However, we found that in long evolutionary timespan,
WGDs are more prone to diverge themselves in struc-
ture, function as well as expression to perform new and
beneficial roles within the organism than the SSD genes.
This also increases the chance to cause disease or lethal-
ity upon mutation on the WGD genes, due to the inabil-
ity of their paralogous copies to restore the gene-
deletion fitness. However, why the ancient SSD and
WGD genes show differences in their functional diver-
gence, being evolutionarily similar in origin, is a matter
of future investigation. In conclusion, our study provide
an insight into the long-term evolutionary fate of dupli-
cates originated from whole-genome duplication, rather
than their immediate impact on the organism, to which
the early studies with yeast [20, 41, 44] were focussed.

Methods

Identification of human small-scale and whole genome
duplicates

We obtained 22,447 human protein coding genes from
the biomart interface of Ensembl version 77 [46] (http://
www.ensembl.org/biomart/martview). The whole-genome
duplicate (WGD) pairs were obtained and compiled from
two datasets: 1. Makino and McLysaght [39] and 2.
OHNOLOGS (http://ohnologs.curie.fr/) [45]. We used the
strict [g-score (outgroup) < 0.01 and q-score] (self com-
parison) < 0.01] dataset of OHNOLOGS database to
discard false positives and maintain stringency of our data.
All other duplicates were obtained from the biomart inter-
face of Ensembl 77 [45] and termed as small-scale dupli-
cates (SSD). We used 50 % sequence identity with high
paralogy confidence to assign paralogs, in order to
retain old and/or distant paralogs. Finally, we ob-
tained 34,746 duplicated pairs with 21,446 SSD and
13,300 WGD pairs comprising 4670 and 7070 genes,
respectively (Additional file 4: Table S1).

As our dataset contains two groups of duplicates origi-
nated differentially in evolutionary time-scale, they are
also different in terms of sequence divergence between
duplicated pairs. The whole genome duplicates have
originated during the evolution of early vertebrates and
the small-scale duplicates have originated spontaneously
at different times, thus, the latter may contain more re-
cent duplicates with a possibility of being less diverged
in sequence level. Therefore, it is necessary to remove
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the bias due to the differential sequence divergence of
SSDs and WGDs for calculating their differences in their
functional properties. For this, we binned our dataset ac-
cording to the nonsynonymous nucleotide substitution
per nonsynonymous sites (AN) between each duplicated
pairs, as the nonsynonymous substitutions bring change
at protein level and older duplicate group (WGD) will
tend to have higher dN than the newer one (SSD).
Finally, both SSD and WGD duplicate pairs, we ob-
tained five groups based on dN ranges between the
paralogs—dN 00-0.1» AN 0102, AN 0203 dN g3 04
and dN .4 and differentiated the evolutionary features
between SSD and WGD genes in each dN range.

Functional similarity

The functions of human protein coding genes repre-
sented by their Gene Ontology terms were obtained
from the biomart interface of Ensembl version 77 [46].
We considered the GO domains ‘Biological process” as
well as ‘Molecular function’ separately for functional
similarity measurement. The functional similarity
within each duplicate pair were calculated by their GO
annotations using the following formula adapted from
the Bayesian data integration method [44, 70]-

2 x 8(i, )
[GO terms(i) + GO terms(j)]

Functional Similarity(i,j) =

Where ‘i’ and " are duplicated pairs and ‘S(i,j)’ repre-
sents the Gene Ontology terms shared between the
duplicated pairs 1 and .

Subcellular localization

The protein subcellular localization represented by the
respective genes’ Gene Ontology terms for the GO
domain ‘Cellular component’ were obtained from the
biomart interface of Ensembl version 77 [46]. Considering
the Gene Ontology terms of a gene and its paralog, we
obtained the subcellular compartment sharing for each
SSD and WGD duplicate pairs. With the same for-
mula used for functional similarity calculation men-
tioned previously, we calculated the subcellular
compartment sharing for each duplicate pairs and
compared the SSD and WGD genes of different dN
ranges (as mentioned above).

Gene expression

The RNA-seq gene expression data of human were
taken from two databases- The gene expression values
of 9113 duplicated genes in 27 different tissues (namely
adipose tissue, adrenal gland, appendix, bone marrow,
cerebral cortex, colon, duodenum, oesophagus, gallblad-
der, heart muscle, kidney, liver, lung, lymph node, ovary,
pancreas, placenta, prostate, salivary gland, skin, small
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intestine, spleen, stomach, testis, thyroid gland, urinary
bladder and uterus) were extracted from the human
protein atlas Release 9 (http://www.proteinatlas.org/)
[49, 71] and 9393 duplicate genes in 32 different tissues
(namely adipose tissue, adrenal gland, ovary, appendix,
bladder, bone marrow, cerebral cortex, colon, duodenum,
endometrium, oesophagus, fallopian tube, gall bladder,
heart, kidney, liver, lung, lymph node, pancreas, placenta,
prostate, rectum, salivary gland, skeletal muscle, skin,
small intestine, smooth muscle, spleen, stomach, testis,
thyroid and tonsil) were obtained from Expression Atlas
(http://www.ebi.ac.uk/gxa) [50, 72], which present stable
repositories of experimental RNA-seq gene expression
data in human tissues. The Pearson correlation coeffi-
cient (see formula below) was used to determine the
expression profile similarity within the paralogous
copies.

Pearson correlation coefficient(r)

) Ny (30 ()
ey ]2

Where ‘i’ and ‘" are paralogous pairs, ‘N’ is the total
number of tissues, ‘Yij’ is the sum of the products of
paired expression signal intensities, Y’ sum of expres-
sion signal intensities for gene ‘i, ¥ is the sum of
expression signal intensities for gene %, (Xi*)" is sum of
squared expression signal intensities of gene ‘i, ‘Yj* is
sum of squared expression signal intensities of gene ‘.

Evolutionary rate

The oldest and widely used measurement of evolu-
tionary rate calculates the evolutionary rate by using
either dN values [73], or the ‘% ratio [74, 75], where
'dN" denotes Nonsynonymous nucleotide substitution
per nonsynonymous sites and 'dS' stands for Syn-
onymous nucleotide substitution per synonymous
sites. For our study, we obtained one-to-one Mouse
(Mus musculus) and Chimpanzee (Pan troglodytes)
orthologs for each human genes to obtain the dN and
dS values from the biomart interface of Ensembl ver-
sion 77 [46]. Mutation saturation was controlled by
discarding all dS values>3 [76]. We discarded the
genes having paralogous copies from both small-scale
and whole-genome duplications and used the nonredun-
dant set of 9386 genes with only SSD or only WGD para-
logs, but not both. Considering these SSD-only and
WGD-only pairs, we obtained two distinct sets of genes:
1. Genes (and its paralogous copies) involved in Small-
scale duplication only (SSD only) (containing 3478 genes),
and 2. Genes involved in Whole-genome duplication only
(WGD only) (containing 5908 genes). The dN values and
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‘:I—I;[ ratios between these groups were compared and used

as the measurement of evolutionary rate.

Multifunctionality

The Multifunctionality of a gene and its encoded protein
was measured by two approaches: A. Using their Gene
Ontology annotation [77] for the GO domain ‘biological
process’ from Ensembl Genome Browser [46], we calcu-
lated the unique biological processes of which a gene
and its encoded protein(s) take part and used as the
measurement of multifunctionality [51, 52], B. Addition-
ally, we also considered the number of functional protein
domains as proxy of Multifunctionality using Pfam
protein families database. Finally, we compared the
multifunctionality of SSD-only and WGD-only genes.

Gene essentiality

The human gene essentiality data were obtained from
the Online GEne Essentiality (OGEE) database (http://
ogeedb.embl.de/#overview:) [55]. After matching this
essentiality data with our dataset, we finally obtained
gene essentiality information of 2692 SSD-only and 5730
WGD-only genes. We compared the proportion of
essential genes between these duplicate sets.

Disease association

Human disease genes were obtained from ‘The Human
Gene Mutation Database’ (http://www.hgmd.cf.ac.uk/ac/
index.php) [63]. After discarding redundancy, we were
able to identify 9668 disease genes of which, 9299 genes
were matched to our dataset. This contains both the
monogenic and the polygenic disease genes and is con-
sidered as human disease-associated genes. All other
genes were termed 'non-disease genes' (N =13148). We
compared the proportion of disease genes among the
SSD-only (N = 3478) and WGD-only (N = 5908) sets.

Software

We used the SPSS package (version 13) [78] and our
in-house PERL-script for all statistical analyses. The R
package [79] was used for data representation.

Availability of supporting data

The dataset of human small-scale and whole-genome
duplicate pairs used in the study is available in Additional
Table S1.

Ethics statement

The human data used in the study were collected from
publicly available databases. Therefore ethics was not
required for our study.
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Insights into human intrinsically disordered
proteins from their gene expression profilet

Arup Panda, Debarun Acharya®* and Tapash Chandra Ghosh*

Expression level provides important clues about gene function. Previously, various efforts have been
undertaken to profile human genes according to their expression level. Intrinsically disordered proteins
(IDPs) do not adopt any rigid conformation under physiological conditions, however, are considered as
an important functional class in all domains of life. Based on a human tissue-averaged gene expression
level, previous studies showed that IDPs are expressed at a lower level than ordered globular proteins.
Here, we examined the gene expression pattern of human ordered and disordered proteins in 32 normal
tissues. We noticed that in most of the tissues, ordered and disordered proteins are expressed at a
similar level. Moreover, in a number of tissues IDPs were found to be expressed at a higher level than
ordered proteins. Rigorous statistical analyses suggested that the lower tissue-averaged gene expression
level of IDPs (reported earlier) may be the consequence of their biased gene expression in some specific
tissues and higher protein length. When we considered the gene repertory of each tissue we noticed
that a number of human tissues (brain, testes, etc.) selectively express a higher fraction of disordered
proteins, which help them to maintain higher protein connectivity by forming disordered binding motifs
and to sustain their functional specificities. Our results demonstrated that the disordered proteins are

rsc.li/molecular-biosystems

Introduction

Extensive research on intrinsically disordered proteins (IDPs)
over the past few decades has led to a paradigm shift in our
understanding of protein structural biology. These studies
marked disordered proteins as a unique structural class, distinct
from globular proteins in a number of structural and functional
characteristics." Differences between ordered and disordered
proteins are manifested in multiple layers, starting from their
sequence composition to functional consequences and evolutionary
aspects. At the primaty structure level, IDPs are devoid of hydro-
phobic and aromatic residues and highly enriched with polar and
charged amino acids.>* At the functional level, disordered proteins
are enriched with processes complementary to the functions of
globular proteins and are implicated in various regulatory and
signaling cascades, such as control of cell division, apoptosis,
post-translational modification, and transcription, etc.*” Since IDPs
are composed of low complexity regions and are enriched with
highly mutable hydrophilic residues these proteins tend to evolve
at a faster rate as compared to globular proteins.®® Although IDPs
lack three-dimensional structures under physiological conditions,
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indispensable in these tissues for their functional advantages.

these proteins can adopt well-defined conformations upon inter-
action with partner proteins (coupled folding and binding).'® This
unique feature of disordered proteins enables them to bind with a
large number of partner molecules. Thus, disordered proteins
often act as hubs in protein-protein interaction networks.'* IDPs
were initially regarded as a rare class of proteins. However,
considering their abundance in different domains of life recent
studies have suggested that IDPs constitute a very large class of
proteins. Although there are controversies regarding the extent of
the disorder, these studies suggested a general trend that IDPs are
more common among complex genomes such as multi-cellular
eukaryotes, however, are less abundant in unicellular bacterial
and archaeal genomes."”™"” Because of their functional advan-
tages, recently it was proposed that IDPs play important roles in
the evolution of complex organisms and their strategies to cope
with environmental stresses.'®>"

Although considerable progress has been achieved in our
understanding of the characteristics of disordered proteins,
many intriguing questions still remain elusive. One of the
major goals of molecular biology is to profile transcripts in
terms of their tissue distribution. Expression level provides a
crucial indication of whether a gene is functional in a tissue or
not. Moreover, gene expression profiles have major implications
for understanding human disease etiology for the development
of novel therapeutics.?*** Therefore, previously a number of
initiatives have been undertaken to estimate the expression
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levels of human genes at genomic scales.*>** However, until
now little attention has been paid to investigating the gene
expression signatures of disordered proteins at the tissue level.
A few previous studies that have estimated their gene expression
level considered the average gene expression values across all
the tested tissues.?>?® Thus, to date, we have no clear under-
standing of whether these proteins are expressed in all human
tissues and to what extent. Therefore, in this study, we took an
initiative to profile disordered proteins in terms of their gene
expression level across various human tissues. Based on a mean
gene expression level of several human tissues, previously it was
ascertained that as compared to globular proteins, most of the
disordered proteins tend to be expressed at a lower level >>2°
However, tissue wise gene expression values, as we analyzed in
this study, revealed a contrasting trend. Our study suggested
that depending upon the nature of the tissue, disordered
proteins may be expressed at a higher, lower or similar level
as compared to ordered globular proteins. Moreover, here we
found evidence that several human tissues selectively express a
higher fraction of disordered proteins which help to sustain
their functional specificities.

Methods

Data collection

Tissue wise gene expression values of human protein-coding
sequences were obtained from Uhlén et al.,*” In this dataset,
average FPKM (fragments per kilobase of exon model per
million mapped reads) values were provided for a total of
20344 genes across 32 human tissues (adipose tissue, adrenal
gland, appendix, bone marrow, brain, colon, duodenum, endo-
metrium, esophagus, fallopian tube, gallbladder, heart muscle,
kidney, liver, lung, lymph node, ovary, pancreas, placenta,
prostate, rectum, salivary gland, skeletal muscle, skin, small
intestine, smooth muscle, spleen, stomach, testis, thyroid
gland, tonsil, urinary bladder). All these genes were tested for
evidence at a protein level through various biochemical
approaches; for details see Uhlen et al.>” Here, we discarded
3174 genes either with no evidence or with evidence only at the
transcript (RNA) level and further removed 535 genes with
undetectable gene expression values (FPKM < 1 in all tissues).
Following the gene annotation of Uhlén et al, protein coding
sequences of these genes were retrieved from Ensembl release
75.”% For genes with more than one transcript, we considered
the longest transcript. Sequences containing internal stop
codons and partial codons were detected by CodonW (J Peden,
http://codonw.sourceforge.net) and removed.

Prediction of protein intrinsic disorder content

Disorder predictions for human proteins were retrieved from
the Database of Disordered Protein Predictions (D2P2) database.>®
Currently, D2P2 houses disorder predictions for more than
10429760 unique proteins from 1765 individual genomes. Each
protein in this database was checked with nine disorder prediction
algorithms, namely VL-XT, VSL2b, PrDOs, PV2, IUPred-S, IUPred-L,

2522 | Mol. BioSyst., 2017, 13, 2521-2530

View Article Online

Molecular BioSystems

Espritz-X, Espritz-N and Espritz-D, and searched for several other
biologically relevant information such as the number of phos-
phorylation sites, domain annotations, etc. D2P2 allows users to
retrieve disorder predictions in several useful formats. To
calculate the disorder content of proteins in our dataset we
retrieved a prediction for all human proteins currently available
in this database. However, we considered disorder predictions
only when we found an exact match between the sequences in
the D2P2 database and the sequences in our dataset. We found
disorder predictions for 15472 proteins in our dataset all of
which were considered for this analysis. To estimate the fraction
of disordered residues in each protein, we considered the
residues predicted as disordered residues by at least five of
the nine algorithms. The disorder content was calculated as the
fraction of the total number of such disordered residues in a
protein to the length of that protein. We also checked the
consistency of the results by calculating protein disordered
content considering residues predicted as disordered by at least
6 and 7 algorithms.

Calculations of tissue selectively

To determine the genes that are selectively expressed in different
tissues we considered two approaches. At first, we followed the
tissue annotation of Uhlén et al., from where we retrieved gene
expression values.”” Based on the expression profile they classi-
fied human genes into six general categories (i) tissue enriched
genes, (ii) group enriched genes, (iii) tissue enhanced genes, (iv)
mixed genes, (v) genes which are expressed in all tissues and (vi)
genes which are not expressed in any tissue. Among these
categories, tissue enriched genes were defined with most stringent
criteria, 5-fold higher FPKM in one tissue as compared to all the
remaining tissues. To compile the list of genes that are selectively
expressed in each tissue, we considered the genes that were
annotated as ‘tissue enriched genes’ and associated with only one
tissue. However, the genes that were identified as tissue-selective
genes by this approach lack any statistical validation. Therefore, we
considered another approach that defines tissue-selective genes
through rigorous statistical analysis.*>** Following Chang et al.
and Greco et al. for each tissue-gene pair we calculated a tissue-
selectivity score S;; from the gene expression matrix as:

Sij =W; X Xij
Here, X;; is the normalized gene expression (FPKM) value of
gene ‘i’ in tissue ¢’ and W; is a gene-specific weight. The gene-
specific weight W; was calculated as follows:

1 N
I/Vi = m ;::1 (1 - Xik)
Here, Xj; is the FPKM value of gene ‘i’ in tissue ‘k’ and N is the
total number of tested tissues.
The normalized gene expression value Xj; was calculated by
dividing the FPKM value of gene ‘i’ in tissue ‘j’ with its highest
FPKM across all the tested tissues.

Yi

Xj=—"T——
U max{ iy,
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Tissue selectivity score Sj; ranges between zero and one, where
one denotes a higher propensity of tissue-selective expression.
The significance threshold for the tissue-selectivity score was
computed through a permutation test. Briefly, we generated
1000 arbitrary gene expression datasets by sampling tissue-
gene pairs randomly and calculated tissue-selectivity scores for
each such dataset. For each tissue gene pair, we calculated the
threshold value as the number of times the random tissue
selective scores are greater than the real tissue selective score
divided by the number of randomized datasets (1000). For a
gene, if we found a tissue with FPKM > 100 with threshold
value <107 then the gene was considered to be selectivity
expressed in that tissue.?**

Prediction of molecular recognition features (MoRFs)

Protein binding sites embedded within disordered regions were
predicted by the ANCHOR algorithm®*** and fMoRFpred
algorithm.** ANCHOR predicts protein-protein interaction
sites that undergo disorder to order transition upon binding
on the basis of pairwise inter-residue interaction energies
irrespective of its amino acid composition and its secondary
structure.>” This method was proposed to give an unbiased
estimate of protein binding capacity.”> fMoRFpred predicts
MORF regions with the help of support vector machine based
on 20 features related to the structural and biochemical char-
acteristics of the input protein sequence. This algorithm was
tested with several benchmarking datasets and validated
against experimentally supported results in small scales.>* For
each residue in the input sequence, fMorfPred provides a
binary classification where ‘1’ denotes an MoRF residue and
‘0’ a non-MoREF residue. Currently, fMoRFpred supports prediction
for proteins less than 1000 residues in length. Here, we could
predict MoRF regions for 13 281 of 15472 proteins in our dataset
and then we calculated the percentage of MoRF residues in those
proteins.

Protein-protein interaction data

Human protein-protein interaction data were retrieved from
BioGRID protein interaction repository (v-3.4.144).>° Currently,
BioGRID houses the largest number of interaction pools as
compared to the other human interaction databases like
HPRD,*® MIPS,*” FlyBase,*® etc. Therefore, for systematic analysis
of the interaction network, we chose the BioGRID database.
Currently, there are interaction data for 21270 unique human
proteins collectively annotated with 279 852 non-redundant inter-
actions. To compute protein connectivity, we considered human
binary protein interactions with experimental evidence of physical
connections. We removed self-interactions and counted the
number of unique interaction partners that a protein connects
with (protein connectivity).

Functional enrichment analysis

To determine the functional categories that are significantly
over-represented among the genes that are selectively expressed in
different human tissues we used the GOrilla Gene Ontology (GO)
enrichment analysis tool.>*>*° GOrilla automatically retrieves GO
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terms (biological process, molecular functions, and cellular
components) from gene names or identifiers and compares
their distribution either in a ranked gene list or between a target
and a background list of genes through rigorous statistical
analysis. Along with the details (identifier, description, P values,
etc.) of the terms that are significantly overrepresented in the
target list, GOrilla provides a graphical overview of their hierarchical
relationships. Here, we compared the distribution of GO terms in
tissue-selective genes with respect to their distribution in the total of
15472 human genes considered for this study.

Statistical analyses

All statistical tests were performed using the SPSS package.
Following their non-parametric distribution, we compared the
measures of different variables (protein disorder content, gene
expression level, and protein length) by the Kruskal-Wallis H test,
an extended version of the Mann-Whitney U test, applicable for
comparing distributions between multiple independent groups. To
determine significant differences we considered adjusted P values
corrected for multiple comparisons. For correlation analysis, we
calculated non-parametric Spearman’s Rank correlation coefficient
p, where significant correlations were denoted by P < 0.05.

Results

Gene expression level of disordered proteins across 32 human
tissues

To analyze the gene expression pattern of human disordered
proteins at the tissue level we considered the dataset provided
by Uhlén et al.,”” with two restrictions that (i) only genes with
detectable expression (FPKM value > 1) at least in one tissue
and (ii) only genes with evidence at the protein level were selected.
Genes with no evidence at the protein level were regarded as
missing genes or non-coding genes and were suggested to be
removed from the list of human protein-coding sequences.””
Disorder predictions were retrieved from the D2P2>° database
and disorder content was estimated based on the consensus of
5 of 9 prediction algorithms (see materials and methods).
Following Edwards et al.,”® we categorized our dataset into five
bins in ranges of 0-20% (ordered), 20-40% (moderately disordered),
40-60% (disordered), 60-80% (highly disordered) and 80-100%
(extremely disordered) predicted disorder content. As has been
suggested earlier,” here we noticed that both highly disordered
(predicted disorder content >60%) and extremely disordered
proteins (predicted disorder content >80%) are relatively rare
in the human proteome (Fig. S1 in Supplementary file 1, ESI}).
Following previous studies,?*?” an FPKM value of 1 was taken as
a threshold to estimate the genes expressed in different tissues.
Interestingly, among the genes expressed in different tissues
(with FPKM > 1), ~3% of genes were found to be extremely
disordered (predicted disorder content >80%) and ~11-12%
of genes were predicted as highly disordered (predicted disorder
content >60%). Next, we calculated the mean gene expression
intensities of ordered and disordered proteins in each individual
tissue (Fig. S2 and Table S1 in Supplementary file 1, ESIY).
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In 21 of 32 tested tissues (adipose tissue, adrenal gland, appendix,
colon, duodenum, esophagus, fallopian tube, gallbladder, heart
muscle, lung, pancreas, placenta, prostate, rectum, salivary gland,
small intestine, smooth muscle, stomach, thyroid gland, tonsil,
and urinary bladder), we did not find a significant difference in
gene expression level between any order and disorder categories
(P > 0.05 for all the pairwise comparison among five disorder
categories by Kruskal-Wallis H Test). However, in tissues like
the brain, endometrium, lymph node, ovary, skeletal muscle,
skin, spleen, and testes, disordered (bin3) and/or highly
disordered (bin4) proteins were found to be expressed at a
significantly higher level as compared to ordered proteins
(bin1) (P < 0.05). In contrast, an opposite trend was noticed
in three tissues - liver, kidney and bone marrow, where ordered
proteins were found to be expressed at a relatively higher level
than disordered proteins (Fig. S2 and Table S1 in Supplementary
file 1, ESIt). We also tested whether the observed variations in
mean gene expression levels between proteins in different dis-
order bins are due to random chance. For this analysis we
generated 100 arbitrary gene expression matrices from our real
gene expression dataset by random permutation of tissue gene
pairs. Next, in each random dataset we found out the tissues
where ordered and disordered proteins differ significantly in
their mean gene expression level. Considering all those random
datasets (32 x 100 tissue wise comparisons) we found significant
differences in 142 tissues (~1.5 tissues per random dataset)
(Supplementary results S2 in Supplementary file 3, ESIf). In
~50% of tissues where we found significant differences, disordered
proteins were found to be expressed at a higher level, while in the
remaining ~50% ordered proteins were found to be expressed at a
higher level. Moreover, here we did not find any general trend in
these tissues. Altogether this suggested that the observed variations
are not due to random chance. In addition, the mean gene
expression intensity values may have been biased by the very high
expression of a few genes in some tissues. To check this possibility
we calculated average gene expression intensities after removing the
genes with expression intensity > 1000 (Fig. S3 in Supplementary
file 1, ESIT) and > 5000 (Fig. S4 in Supplementary file 1, ESIt) in any
of the tested tissues and considered median values instead of
mean values (Supplementary file 2, ESIt). Further, we re-annotated
proteins into five disordered bins based on the disorder content
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predicted by the consensus of 6 (Fig. S5 in Supplementary file 1,
ESIt) and 7 algorithms (Fig. S6 in Supplementary file 1, ESIT) and
compared their mean gene expression levels. When we compared
among these datasets (Fig. S2-S6 in Supplementary file 1, ESIT) we
noticed a similar trend that in most of the human tissues there is
no significant difference in gene expression between any disorder
bins (Table S1 in Supplementary file 1, ESIt). For most of the
tissues in which we found a significant difference we didn’t find
any consistent trend, however disordered proteins were found to
be expressed at a lower level in the liver and kidneys across all
these datasets, while at a higher level in the testes, ovaries and
to some extent the brain. Previously, it was ascertained that
disordered proteins tend to be expressed at a lower level than
ordered globular proteins.*>*® However, these results imply
that in most of the human tissues proteins are expressed at a
similar level irrespective of their order and disorder tendencies.
Moreover, here we found evidence that disordered proteins may
be expressed at a higher level than ordered proteins depending
upon the tissue physiology.

Tissue averaged gene expression level of disordered proteins

Based on the tissue averaged gene expression values, previously
it was shown that human disordered proteins (predicted dis-
order content 40-80%), tend to be expressed at a comparatively
lower level than ordered globular proteins.>**® Thus our results
are in apparent conflict with the results shown based on tissue
averaged values. To check whether tissue averaged values would
reflect a different scenario than what we found in individual
tissues, we considered the average gene expression level of all
the 32 tissues. As has been reported earlier, here we noticed
that disordered and highly disordered proteins (predicted dis-
order content 40-80%) indeed have significantly lower tissue
averaged gene expression levels than ordered proteins (Fig. 1A).
However, all significant differences disappeared when we calculated
the mean values without considering the tissues (liver, pancreas,
and salivary gland) where we found large variation in gene
expression between ordered and disordered proteins (Fig. 1B).
Thus, these results suggest that the lower tissue averaged gene
expression level of disordered proteins, as reported earlier, may
have been caused by biased gene expression of these proteins in
some specific tissues. To further evaluate the effect of other
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Fig. 1 Tissue-averaged mean gene expression levels of proteins in different disorder bins. (A) Average values calculated considering all 32 tissues, (B)
considering 29 tissues (without considering liver, pancreas, and salivary gland where we found large variation in gene expression between ordered and

disordered proteins).
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factors we considered the impact of protein length. Gene length
was regarded as a major determinant of gene expression level*"**
and was also shown to be correlated with protein disorder
content.®'® In accordance, here we noticed a significant negative
correlation between protein length and tissue averaged gene
expression level (Spearman p = —0.132, P = 1 x 10~ °). Conse-
quently, proteins in moderately and highly disorder bins were
found to have a significantly higher length as compared to
ordered proteins (Fig. 2), suggesting that disordered proteins
may have lower gene expression due to their higher protein
length. To analyze how protein length influences the correlation
between gene expression level and protein disorder content we
controlled this effect using partial correlation analysis. The weak
correlation between gene expression and protein disorder con-
tent was found to disappear (Spearman p = —0.018, P = 2.3 X
1072 for correlation between protein disorder content and
average gene expression) controlling protein length. To evaluate
whether the observed distribution of tissue averaged gene
expression intensities has really been influenced by protein
length we compared gene expression levels between ordered
and disordered proteins of comparable length (in protein length
bins). When we controlled the effect of protein length in this
way we found no significant difference in mean gene expression
intensity between ordered and disordered proteins in most of
these bins (Table S2 in Supplementary file 1, ESIT). However,
one probable reason for not finding a significant difference may
be the lower sample size ie. the number of ordered and
disordered proteins to compare in each length bin. To consider
this possibility, we randomly sampled 500 proteins from each of
the ordered, moderately disordered, disordered and highly
disordered protein groups such that the average gene lengths of
these groups do not differ significantly. We then checked whether
the tissue averaged gene expression level varies significantly
between these groups. The extremely disordered group of proteins
was not considered for this analysis due to the insufficiency of the
dataset required for the randomization procedure. We repeated
the procedure 1000 times, however, in more than 95% of cases we

P < 0.001
P < 0.001 P < 0.001
=

|

Mean Protein Length
0 200 400 600 800

Bin1 Bin2 Bin3 Bin4 Bin5

Fig. 2 Average length of proteins in different disorder bins. Significant
differences for pair-wise comparison between different groups were
evaluated through Kruskal Wallis H test and shown with P-values.
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did not find any significant difference (at 95% confidence level) in
the tissue averaged gene expression level between any disorder
bins. Thus, these results suggest that a lower tissue averaged gene
expression level among the moderately and highly disordered
proteins as has been reported earlier may be the consequence of
their higher gene length.

Disordered proteins and tissue functionality

Our results suggested that although in most of the human
tissues ordered and disordered proteins are expressed at a
similar level, in some specific tissues disordered proteins tend
to be expressed at a higher level than ordered proteins. To delve
into this issue further, we analyzed gene expression specificities
of ordered and disordered proteins in each individual tissue.
Genes that are expressed predominantly in a particular tissue
were considered to be important for functional specificities of
that tissue.>**"** Therefore, here we considered the genes that
are selectively expressed in each of the 32 tissues identified by
two approaches (see Materials and methods). From Uhlén’s
et al.,”” we retrieved 1707 tissue enriched genes, as compared to
1086 tissue-selective genes identified by the second method.>**!
For most of the tissues, we noticed a high degree of overlap
between the lists of tissue-selective genes identified by these two
methods (Fig. S7 in Supplementary file 1, ESIT). Moreover, genes
which were identified as tissue-selective genes by both these
methods (602 genes) were found to have the same tissue
specificity. When we compared their protein disorder content,
we found that genes that are selectively expressed in tissues like
the testes, brain, etc. have a higher protein disorder content as
compared to the genes that are expressed selectively in the liver,
pancreas, kidney etc. tissues (Fig. 3). The higher protein dis-
ordered content of tissue-selective genes may suggest that
disordered residues are indispensable for the proper functioning
of the former group of tissues. In this context, we found it
interesting to analyze why the genes that are selectively expressed
in the former group of tissues encode more disordered residues
as compared to the other groups of tissue-selective genes.
Previously, it was ascertained that proteins that connect with
a large number of partners in their interaction network (hub
proteins) are more disordered as compared to the proteins that
interact with few partners.""** Consequently, we compared
different groups of tissue-selective genes in terms of their
protein connectivity. In favor of their higher disorder content,
here we noticed that genes that are selectively expressed in
tissues like the testes and brain, etc. share higher protein
connectivity than the genes that are selectively expressed in
the liver or kidneys (Fig. 4). Proteins with higher connectivity
were shown to encode a large number of disordered binding
regions (protein binding sites within disordered regions) for
their binding promiscuity.*> Therefore, we predicted disordered
binding sites using two algorithms - (1) ANCHOR® and (2)
fMoRFpred,** both of which suggested that the genes that are
selectively expressed in the former group of tissues (testes,
brain, etc.) encode a greater fraction of such motifs than the
liver and kidney etc. tissue-selective genes (Fig. 5). This may
suggest that a higher fraction of disordered residues among the
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Fig. 3 Average protein disorder content of different groups of tissue-enriched genes. A protein disorder content was retrieved from the D2P2 database
and tissue-selective genes were identified using two methods: (A) Uhlen et al. and (B) Chang et al., and Greco et al. Here, tissues with 30 or more selective
genes were shown. Significant differences in protein disorder content between the different groups of tissue selective genes were evaluated through

Kruskal Wallis H test shown with P-values.
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Fig. 4 Average protein connectivity of different groups of tissue-enriched genes. Only tissues with 30 or more tissue enriched genes were shown.
(A) Tissue-selective genes retrieved from Uhlen et al. and (B) those identified following Chang et al., and Greco et al. Significant differences between the
different groups of tissue-selective genes were evaluated through Kruskal Wallis H test and shown with P-values.

former groups of tissue-selective genes is a prerequisite for
forming protein-protein interaction sites. Next, we tested the
influence of gene functionalities. Previous studies have grouped
different functional keywords according to their ordered and
disordered tendencies.*>*’ In particular, proteins involved in
signal transduction, regulation, protein transport and development
and differentiation-related processes were shown to be more
disordered as compared to the proteins which mainly function
in ion transport, metabolic and enzymatic activities."**™*” When
we analyzed the functional association of different groups of
tissue-selective genes we noticed that genes that are selectively
expressed in the testes, brain, and ovaries are enriched with
disorder-related functions (cell cycle, reproductive processes,
signaling, regulation, and cell differentiation, etc.) while the
genes that are expressed mainly in the liver and kidneys are
enriched with terms that rely on globular proteins (ion trans-
port, transmembrane transport, metabolic processes, and
regulation of metabolic processes, etc.) (Supplementary file 4,
ESIt). These inherent biases towards disorder related functions

2526 | Mol. BioSyst., 2017, 13, 2521-2530

may also account for the higher disorder content among the
former groups of tissue-selective genes.

Discussion

Analysis of the gene expression pattern across tissues and
organs was considered to be crucial for the understanding of
human disease and biology. Expression levels can provide
important clues about the phenotypes and functionalities of genes
across different tissues and their regulatory mechanisms.>*=%!
Although disordered proteins are considered as a predominant
class, specifically among higher eukaryotes,>*"'*'"? to date little
attention has been paid to investigating their gene expression
profile. In this study, we retrieved high-throughput gene expression
data for more than 15 000 human proteins from published literature
and analyzed their gene expression signature across 32 normal
human tissues. Since disordered proteins are vulnerable towards
protein aggregation, previously it was suggested that cells need

This journal is © The Royal Society of Chemistry 2017
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Chang et al., and Greco et al. datasets. Significant differences between the different groups of tissue selective genes were evaluated through the Kruskal

Wallis H test shown with P-values.

intricate regulatory mechanisms to maintain their concentration
below a certain limit.>>?*** However, here we did not find any
general trend of low expression of disordered proteins except in a
few specific tissues (Fig. S2-S6 and Table S1, Supplementary file 1,
ESIT). Moreover, our results suggested that in a number of human
tissues disordered proteins tend to be expressed at a higher level
than ordered globular proteins. Based on the tissue averaged gene
expression intensity, previously Gsponer et al,”® have shown that
human disordered proteins tend to be expressed at a lower level
than globular proteins. Consequently, disordered proteins were
shown to contain a higher proportion of ubiquitination and
micro-RNA target sites and high mRNA decay rates suggesting a
complex association between gene expression level and protein
intrinsic disorder content.”® Considering the mean gene expression
level of 32 human tissues, here we observed a similar trend.
However, we did not find any significant difference when we
calculated mean values without considering three tissues (liver,
pancreas, salivary gland) which may imply that the lower tissue-
averaged values are caused by the low gene expression level of
disordered proteins in some specific tissues. Previous studies
suggested that longer genes tend to be expressed at a lower level
than shorter genes.*"** Accordingly, here we noticed a similar
trend in each and every individual tissue considered in this study.

This journal is © The Royal Society of Chemistry 2017

Considering this, together with the fact that moderately and
highly disordered proteins are longer than ordered globular
proteins (Fig. 2) here we assumed that protein length may have
some influence on the correlation between protein disorder and
gene expression level. This became clear from partial correlation
analysis where the correlation between gene expression and
disorder content disappeared after controlling protein length.
In addition, comparing the expression levels of genes having a
similar protein length, no significant difference was observed
between the disorder groups, suggesting that the protein length,
rather than protein disorder content is the major determinant
of gene expression level here. Therefore, overall this study
suggests that the previously accepted impression that disordered
proteins are expressed at a lower level than ordered protein holds
true for only a few tissues, and is mostly influenced by their
higher protein length.

In the next part, we tried to explore the functional significance
of disordered proteins in human tissues by considering the
disorder content of tissue-enriched genes. Previously, great
interest has been paid to characterizing different human tissues
in terms of their transcriptome profile.”>*****° These studies
suggested that most, if not all, of the human tissues express a
few genes predominantly which are crucial for maintaining

Mol. BioSyst,, 2017, 13, 2521-2530 | 2527


http://dx.doi.org/10.1039/C7MB00311K

Published on 11 October 2017. Downloaded by Bose Institute on 19/12/2017 07:42:54.

Paper

their functional differences with other tissues as well as for their
development and differentiation.*>>**%3"*3 Several methods
have been proposed earlier to evaluate whether a gene has an
affinity to be expressed in a particular tissue selectively.’ To
underscore the proteins that are important for the proper
functioning of different human tissues here we considered
two such approaches and identified the genes which show
predominant expression in each tissue individually. Functional
analysis of selectively expressed genes for the tissues where we
found an adequate number of such genes suggested an overall
concurrence with the function of the respective tissues. Comparing
their protein disorder content, here we noticed a higher fraction of
disordered residues among the genes expressed mainly in the
testes, brain etc. tissues as compared to those expressed pre-
dominantly in the liver, pancreas, kidney etc. tissues suggesting
that disordered proteins may have important functional
consequences for the former group of tissues. Consequently,
our analysis suggested that the proteins encoded by the former
group of tissue-selective genes interact with a higher number of
partners in their protein interaction network than the latter
group of tissue-selective genes (liver, pancreas, kidney, esophagus,
etc.). Disordered proteins provide internal flexibility during
protein-protein  interaction and facilitate promiscuous
binding."*"* Therefore, highly connected proteins (hub-proteins)
were shown to be enriched with intrinsically disordered regions."*
Higher protein disorder among the former group of tissue-
selective genes may suggest that disordered regions are crucial
to maintain their higher protein connectivity. In order to further
explore the role of disordered proteins in tissue functionalities,
here we carefully examined the presence of disordered binding
sites among the different groups of tissue-selective proteins.
Disordered proteins interact through fly-casting mechanisms
where they undergo folding upon binding. Disordered binding
regions act as elementary units in molecular recognition that
facilitate high-specificity and low-affinity interaction, a specific
signature of disordered proteins.?” Thus, the higher proportion
of disordered binding regions among the former group of
tissue-selective genes (Fig. 5) may be considered as an indication
that disordered residues help these tissues to sustain their
functional specificity by providing structural flexibility for binding
promiscuity. We also observed that in tissues where tissue-selective
genes are enriched in protein disorder, the disorder associated
functions like cell cycle, reproductive processes, signaling,
regulation, and cell differentiation, etc. are overrepresented. In
contrast, in tissues having low disorder content in tissue-
selective genes, the globular protein-associated terms like ion
transport, transmembrane transport, metabolic processes, and
regulation of metabolic processes, etc. are overrepresented'™
(Supplementary file 4, ESIt). Our results suggested a strong
deterioration in mean gene expression level of disordered
proteins only in the liver and kidneys. The liver is the most
metabolically active tissue in the human body®® and the kidneys
are also associated with the elimination of metabolic wastes.
The pancreas is composed of both endocrine and exocrine
glands whose main function is to produce enzymes and
hormones.>* Functional analysis of the genes specific to these
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two tissues suggested that these genes are mostly involved in
functions which need a relatively lower fraction of disordered
residues. Indeed, when we look closely into the genes selectively
expressed in these tissues >80% of the genes were found to
have predicted disorder content <20% (by consensus of five
algorithms). Among the liver-expressed genes, there were 11
genes (AADAC, ADH6, CFHR3, CFI, CPB2, CYP8B1, F11, FGL1,
FMO3, PON1, SERPINA6) with <1% of predicted disordered
residues most of which are enzymes involved in different
catalytic mechanisms. Among the pancreas-enriched genes, we
found six (AMY2A, AMY2B, CPA1, CPB1, CTRB2, FBXW12,
GRPR, PNLIP) genes with predicted disordered residues <1%
four of which encode proteins with enzymatic functions. On the
other hand, >50% of genes selectively expressed in the testes
and brain fall into different disorder categories with a predicted
disorder content of more than 20%. The testes are male
reproductive organ whose main function is to develop male-
specific characteristics.>® Most of the proteins expressed selectively
in the testes are involved in spermatogenesis, a process that needs
intricate regulation.>® Genes showing elevated expression in the
testes are tightly regulated starting from synthesis to degradation
and are mostly involved in different types of molecular binding.>*
Proteins involved in a binding mechanism will certainly need a
high amount of disordered residues to interact with a large
number partners as we observed in our study. Among the testis-
expressed genes, we noticed 15 completely disordered proteins
(PAGE1, TNP1, PRM2, VCY1B, VCY, PAGE5, VCX3A, PCP2,
PRM1, VCX2, TNP2, VCX, GAGE2A, VCX3B, SRRM5) which play
key roles in different phases of spermatogenesis and are
involved in nuclear signaling and regulatory processes. The brain
is the most complex organ of the human body which expresses
genes mostly associated with developmental processes and
synaptic signaling.’® Here we found 11 brain-specific genes
(AMER2, FAM107A, MAPT, BAALC, ERMN, VGF, CPLX1, SRRM4,
CPLX2, NRGN, MBP) with predicted disorder content >90%
which are involved in various neurological processes. Altogether,
our study relates to the specialized functionalities of the tissue
enriched genes of both groups, from the reproductive process or
the cellular differentiation in the testes® to the cellular signaling
indispensable for the functionality of brain® in the disorder-rich
class and from the metabolic processes and their regulation in
tissues like the liver® in the disorder poor class.

Conclusions

Disordered proteins provide flexibility in protein functionalities.
Due to their binding promiscuity, IDPs are considered as hubs
in protein interaction networks where they interact with several
other proteins. Considering the risk associated with increased
use of disordered proteins, previously it was suggested that the
gene expression level of disordered proteins is tightly regulated
at multiple layers of transcriptional control machinery.>® However,
the probability of interaction largely depends upon the availability
of interacting proteins.”” Therefore, reduction of the gene
expression level of disordered proteins may prove detrimental

This journal is © The Royal Society of Chemistry 2017
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to the interaction network. So, the negative correlation between
protein intrinsic disorder and gene expression level in humans
as was obtained by previous studies seems debatable. In this
study, we explored the gene expression profile of human disordered
proteins across 32 normal human tissues. Our results indicated that
disordered proteins do not have any definite association with gene
expression levels, instead lower gene expression of these proteins
resulted from their biased gene expression in some specific tissues
and their higher protein length. Moreover, here we found evidence
that tissues like the testes, ovaries, brain, etc. predominantly express
genes encoding disordered residues to sustain their high protein
connectivity through a higher number of disordered protein
binding sites and are associated with functions that are signatures
of disordered proteins.

Abbreviation

IDP Intrinsically disordered proteins

FPKM Fragments per kilo base of exon model per million
mapped reads.

D2P2  Database of Disordered Protein Predictions

MoRF  Molecular Recognition Features

GO Gene Ontology
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Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-
specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are
divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs.
Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and
observed that this difference is present only in TS, but not in HK-class. Next, we explored whether proteins' own
properties or its partners' properties are more influential in such evolutionary discrepancy. Statistical analyses
revealed that this evolutionary rate correlates negatively with protein's own properties like expression level,

miRNA count, conformational diversity and functional properties and with its partners' properties like protein
disorder and tissue expression similarity. Moreover, partial correlation and regression analysis revealed that
both proteins' and its partners' properties have independent effects on protein evolutionary rate.

1. Introduction

Cells are the fundamental unit of life. Except for the unicellular
ones, every living organism possesses diverse types of cells adapted to
perform specialized functions. The functions of each cell are mediated
by the molecular machinery, of which proteins play an essential part.
Proteins interact with each other and perform almost all the funda-
mental life processes. Such interactions involve interfaces or domains,
which execute the functions of the protein. Protein domains play a
crucial part in molecular evolution since these are used as structural
building blocks and may create proteins with discrete functions due to
exon shuffling [1-3]. The advancement in high-throughput protein in-
teraction data helps to analyze protein functions from the network
perspective. Moreover, within the whole protein interaction network,
there are some small, densely linked components formed by the inter-
actions between proteins, nucleic acids, and other small molecules, and
are weakly connected to the rest of the protein-interaction network.
These components are termed as modules [4]. Recent advances in
discovery and revision of the proteins in modules using computational
biology have enabled us to model these protein-protein interactions as a
network where proteins represent the nodes with interactions as links
between the nodes.
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Inside the protein-protein interactions network (PPIN), proteins
with a high degree of connectivity are found to be essential and are
likely to perturb the PPIN upon deletion, misfunction or misregulation
[5]. These proteins, named as hub, are distinct from lesser connected
proteins or non-hubs and are evolutionary more conserved. Although
most of the earlier studies featuring hub proteins from evolutionary
perspective compared hub and non-hub proteins in PPIN, more recent
studies aim at detailed analysis of hub proteins. One such study by Han
et al. classified hub proteins into two groups - multi-interface hub
proteins (MI or party hubs) and single interface hub proteins (SI or date
hubs) based on protein domain architecture and correlated expression
of the interacting partners [6]. Comparing the evolutionary rate be-
tween these MI and SI hubs revealed discrete differences—MI proteins
were found to be evolutionarily more conserved than SI proteins [7],
which may be mainly due to selective constraint acting on a larger
region in MI proteins, as it usually possesses more interacting surfaces.
Additionally, the party hubs mediate within-module interactions (intra-
module), whereas date hubs integrate between modules (inter-module)
[7]. However, the SI proteins acting on various modules face stronger
consequences when deleted than the less pervasive densely connected
MI proteins, due to their association with diverse functions [8]. Besides,
a few studies have been carried out to understand the structural
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(conformational) and functional role of these hub proteins [9,10]. The
functions of a protein are mediated mainly by its structure. Although
each protein is thought to possess definite three-dimensional con-
formation determined by its amino acid sequence, that may not be the
only conformation adopted by the protein within a cellular system [11].
The magnitude of conformational diversity encompasses structural
changes like fluctuation of protein's side chains and the movement of
loops and secondary structures, even to the global rearrangement in
protein tertiary structure [12].

Further insights into human PPIN classified topological variation
based on gene expression data. Based on gene expression breadth, all
genes are grouped as either tissue-specific (TS), or housekeeping (HK).
Previous studies revealed many differences between the HK and TS
genes in humans. Human HK genes are more compact in structure,
containing shorter intron length, 5 UTR length and coding sequence
length [13]. Consistent with this, HK genes are enriched in shorter re-
petitive sequences such as Alu-elements, but depleted in longer re-
petitive sequences like Long Interspersed Nuclear Element 1 (LINE-1)
elements [14]. Additionally, elucidation of evolutionary rate differ-
ences among these two groups resulted in similar findings across or-
ganisms as diverse as unicellular fungi to humans, the housekeeping
genes (HK) evolve slower than tissue-specific genes (TS) [15]. Ac-
cordingly, the whole PPI network was also grouped into tissue-specific
or local network and housekeeping or global network, where TS hubs
(TSH) evolve faster than HK hubs (HKH). These TSH also feature longer
genes, less protein expression abundance, tight regulation and greater
protein intrinsic disorder content than HKH [54]. Additionally, within
the PPI network, HK genes are more central and are associated with
core cellular processes whereas TS genes are more peripheral with
modified core cellular processes as well as regulatory and develop-
mental functions [16-18]. However, these findings remain confounding
as some TS genes are reported to evolve slower than even this HK class
of genes [19-21]. To address this issue, Podder et al. classified human
proteins into MI and SI counterparts and analyzed the evolutionary rate
of TS and HK genes between these two groups. They found that within
MI proteins, both TS- and HK-genes show similar evolutionary rates,
whereas, within SI proteins, HK genes evolve slower than TS genes
[10]. Furthermore, recent studies based on PPI-network properties
highlights the impact of the partner proteins on proteins' evolutionary
rate [16,22], as the interacting partners also contribute to the central
node evolution via the domain-domain interaction [23]. Such analysis
on HK- and TS-hubs revealed that interacting partners of the TSH are
more conserved than HKH with diverse subcellular localization [22].
However, these studies lack detailed insights into the protein interac-
tion network-based properties and the influence of interacting partners
on the evolutionary rate. Therefore, a detailed spatially resolved ana-
lysis is required to explain the evolutionary rate variation between
these two hub classes.

In this study, we delved deep into the understanding of protein
evolutionary rate based on their expression breadth (whether house-
keeping or tissue-specific) and the contribution of domain number
(whether single or multiple) to it. We tried to identify at which level the
evolutionary conservation endures. Furthermore, we sought to explore
which among the two: protein's own property or partner properties
influence the evolutionary rate of proteins the most.

2. Materials and methods
2.1. Retrieval of dataset

We obtained tissue specific gene expression data from EMBL-EBI
expression atlas (https://www.ebi.ac.uk) for “baseline” expression
where the expression level of each gene in normal and untreated con-
ditions. Then we calculated tissue specificity index t [24] of each gene
for tissue specificity using the following formula [10]—
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an 1 log, Sk (i, j)
j=1 log, SH (i, max)

My —1

T

(where, nH = number of human tissues examined and Sy (i, max)
= highest expression signal of gene i across the nH tissues). The value
ranges from O to 1, where genes with t-values close to ‘0’ are considered
to be more towards housekeeping and those with t-values close to ‘1’
are considered as tissue-specific (TS). T = 0 represents equal expression
of the gene across all tissue, i.e. housekeeping (HK) genes. We sorted
our dataset according to an increasing t values and obtained genes from
extreme 20% of the population from both ends. Thereby, we obtained
1198 HK and 7767 TS genes.

2.2. Protein connectivity data retrieval and interacting domain
identification

Protein-protein interaction data was obtained from BioGRID (re-
lease 3.4.130) (https://thebiogrid.org/) [25]. Genes with at least five
interacting partners were considered to be highly connected or hub
proteins. We obtained human protein sequences from the UCSC genome
browser (http://genome.ucsc.edu). Interacting domains were retrieved
from Pfam repository (http://pfam.sanger.ac.uk/) [55]. The hypothesis
behind the Pfam data retrieving was that the interacting domains confer
binding capability to protein regions. The cut-off values used for do-
main assignment are (1) e-value of alignment e = ** * ™% (2) domain
length > 12; (3) matched sequence length > 80% of domain length
[26]. In particular, single interface proteins were designated as having
few interaction interfaces (two at most) and multi-interface proteins
having more than two interacting interfaces [27]. The numbers of
HKH_MI and HKH_SI proteins are respectively 303 and 895. The num-
bers of MI and SI proteins belonging to TSH PPIN are 1705 and 6062,
respectively.

2.3. Estimation of evolutionary rate

The evolutionary rates of human genes were calculated by dividing
non-synonymous substitution rate (dN) with synonymous substitution
rate (dS). The dN and dS values were retrieved from BioMart interface
of Ensembl Version 87 (http://www.ensembl.org/biomart/martview)
[28] for Homo sapiens (GRCh37) using one to one Human-Mouse as well
as Human-Chimpanzee orthologous pairs.

2.4. Prediction of miRNA targets sites and gene expression level assessment

The number of miRNA targets per gene were obtained from Tar-
getScan (release 6.2) (http://www.targetscan.org) [29] for its more
reliable data over other databases. Tissue-wise RNA-seq gene expres-
sion data was obtained from the human protein atlas [30]. Average
gene expression level of HK genes was calculated by considering only
those tissues where it shows higher than mean expression level calcu-
lated for all tissues. Expression level for TS genes represents only the
tissue where the desired gene is expressed at its highest level.

2.5. Collection of conformational and functional annotation

Protein conformational diversity data was acquired from CoDNaS
database [31]. The database utilizes a total of 70,467 PDB structures
(Protein Data Bank, a repository of biological macromolecular struc-
ture) [32], representing a set of 9398 monomeric proteins of the protein
data bank. Conformational diversity was measured as the maximum
RMSD (root-mean-square deviation measuring the average distance
between the superimposed atoms) between available conformers of a
protein. RMSD values were normalized to RMSD100 for all proteins
with > 40 residues [33]. This provided us with 1094 human proteins
with corresponding conformational diversity values.
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Next, we acquired the protein-coding human genes with functional
annotation from Ensembl Genome Browser (http://www.ensembl.org/)
[28] for “biological process” GO classification for individual gene and
its paralog. Functional divergence was determined using Czekanowski-
Dice distance formula [34].

Functional distance (i, j)
_ Number of(Terms (i) ATerms(j))
" [Number of(Terms(i) U Terms(j)) + Number of (Terms(i) N Terms(j))]

Here, i represents GO terms of individual human genes, j represents
GO terms of the paralogous genes, A corresponds to the symmetrical
difference between the GO term sets of two genes, U and N represents
the non-redundant and common GO terms, respectively.

2.6. Protein disorder content estimation

Protein disordered residues were predicted from one of the top dis-
order predictors: IUPred algorithm [35,36]. It provides a fair estimation
of disorder residue by assigning disorder tendency score for each residue
by their ability to form favorable pair-wise contacts with neighboring
amino acids [37]. Protein disorder content was defined as the fraction of
the total number of such disordered residues within a protein. Moreover,
flexible loops were trimmed down from the calculation by taking only 30
or more consecutive predicted disordered residues at a stretch. Other
stretches were denominated as ordered regions [38].

2.7. Protein tissue expression similarity calculation

As described earlier, proteins were designated as tissue-specific or
housekeeping depending on their t (tau) value. Furthermore, the name
of each tissue where the protein is expressed with the highest level of
expression along with the higher bin of tau value was denoted for that
tissue-specific (Top 20%). Now, these tissue names for each gene data
was integrated with protein-protein interaction data among protein and
its partner. Tissue expression similarity between a protein (y) and its
interacting partner (z) was calculated as

Tissue expression similarity (y, z)
Number of (Tissues (y) ATissues(z))
[Number of (Tissues (y) U (Tissues(z))
+ Number of (Tissues(y) N (Tissues(z)]

Here, ‘Tissues(y)’ and ‘Tissues(z)’ represent the name of tissues where
the protein ‘y’ and its interacting partner ‘2’ is expressed, respectively.,
A corresponds to the symmetrical difference between the tissues where
the two proteins are expressed, U and N represents the nonredundant
and common tissues, where proteins ‘y’ and ‘2’ are expressed.

2.8. Statistical analyses

All the statistical tests were performed using the SPSS (20.0)
package [39]. Non-parametric Spearman's correlation test was used to
evaluate the correlation coefficient between two parameters. Difference
between parameters was calculated with Mann-Whitney U test. Linear
and categorical regression analysis was performed using ANOVA model
for understanding the relationship of the parameters with dN/dS ratio.

3. Results

3.1. Analysis on evolutionary rate difference among different hub protein
classes

In this study, we explored the effect of tissue-specificity in mod-
ulating the evolutionary rate differences of human multi- and single-
interface hubs. Previous studies suggest that highly connected or hub-
proteins evolve slower than lowly connected or non-hub proteins [40].
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Additionally, housekeeping genes are well-known for their slower
evolutionary rate (than the tissue-specific genes) and so are the multi-
interface hubs (than the single-interface hubs) [15,27]. In our analysis,
we used the high-throughput RNA-seq data from the Human Protein
Atlas [30] to obtain housekeeping and tissue-specific genes and phy-
sical protein interaction data from Biogrid [25] and co-expression data
from [30] to obtain multi-and single-interface proteins and achieved
similar trends for both the cases, that is, multi-interface (MI or party-
hubs) evolve slower than single-interface (SI or date hub) proteins
(Table 1). However, the evolutionary rate differences between MI and
SI proteins within the housekeeping and tissue-specific groups are not
yet clear. Therefore, we subdivided human housekeeping-(HKH) and
tissue-specific hub (TSH) genes into MI and SI proteins and obtained
four classes: HKH_MI, HKH_SI, TSH_MI and TSH_SI (Supplementary
Tables S1A and S1B in Supplementary File 1). Comparing the evolu-
tionary rate differences between MI and SI proteins in HKH and TSH
groups using dN/dS ratio revealed that significant difference exists in
the case of TSH_MI and TSH_SI (TSH_.MI < TSH_SI) but not in the case
of HKH_MI and/SI (Table 1). However, as the MI proteins contain larger
regions under selective constraint, we investigated the influence of
protein size on our findings. We classified the proteins in our dataset
into ‘Small’ and ‘Large’ classes depending on the median protein length.
We found that the protein length has no influence in our dataset as the
trend remains the same in both the length bins (Fig. 1). To explain this
further, we studied the most probable parameters leading to such

Table 1

Average dN/dS ratio of different hub-proteins calculated using Human-Mouse and
Human-Chimpanzee orthologs. P-value indicates significance level derived from Mann-
Whitney U test [*” denotes significant differences].

Orthologous gene Category Average dN/
pair ds

Significance level

A. Difference between the evolutionary rate (dN/dS ratio) of tissue-specific hubs (TSH)
and housekeeping hubs (HKH) using mouse and chimpanzee as outgroups

Human-Mouse TSH 0.158 P =1.00 x 10~ %,
(n = 3691) a < 0.001
HKH 0.094
(n = 457)
Human- TSH 0.332 P =950 x 10~ *,
Chimpanzee (n = 5248) a < 0.001
HKH 0.287
(n = 449)

B. Difference between the evolutionary rate (dN/dS ratio) of multi-interface (MI) and
single-interface (SI) hubs using mouse and chimpanzee as outgroups

Human-Mouse MI 0.133 P =1.00 x 10~ %,
(n = 890) a < 0.001
SI 0.156
(n = 3258)
Human- MI 0.293 P =1.00 x 10~ %,
Chimpanzee (n =1292) a < 0.001
SI 0.339
(n = 4405)

C. Difference between the evolutionary rate (dN/dS ratio) of MI- and SI-hubs within
TSH and HKH genes using mouse and chimpanzee as outgroups

Human-Mouse TSH_MI 0.141 P =1.00 x 10’5*,
(n = 770) a < 0.001
TSH_SI 0.163
(n = 2921)
HKH_MI 0.832 P=633x10"2
(n =120) a > 0.05
HKH_SI 0.991
(n = 337)

Human- TSH_MI 0.214 P =1.00 x 10 %,

Chimpanzee (n =1167) a < 0.001

TSH_SI 0.284
(n = 4081)
HKH_MI 0.132 P=438x10"1,
(n = 125) a > 0.05
HKH_SI 0.285
(n = 329)
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Fig. 2. Average gene expression level difference among MI and SI proteins of HKH and
TSH class of genes. P value indicates significance level derived from Mann-Whitney U
test.

Classes of genes

Fig. 3. Average number of miRNA target per gene difference among MI and SI proteins of
HKH and TSH class of genes. P value indicates significance level derived from Mann-
Whitney U test.

TSH_MI hubs are targeted by significantly more miRNAs than TSH_SI
hubs (Fig. 3). However, the HKH_MI and HKH_SI did not show any
difference in average miRNA number among them. Together, these
results may serve as a probable reason for evolutionary discrepancy
among TSH_MI/SI and HKH_MI/SI.

3.3. Role of structural and functional properties on the evolutionary rate of
MI and SI hubs

Recent studies on protein functions primarily focused on this con-
formational diversity of proteins [11], which is found to be negatively
correlated with evolutionary rate [42], mainly because it increases the
functional diversity of proteins. Hence, we look for the conformational
diversity of MI and SI hubs present in HK and TS PPIN. Accordingly, we
found that MI proteins possess a significantly higher conformational
diversity than SI proteins only for TSH class and not the HKH coun-
terpart (Table 2).
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Table 2
Average values for structural and functional properties of TSH and HKH. P-value indicates
significance level derived from Mann-Whitney U test [‘** denotes significant differences].

Parameters Classes of genes  Average Significance level
value
Average TSH_MI 1.35 P =338 x 10" %,
conformational (n = 198) a < 0.05
diversity TSH_SI 1.21
(n = 229)
HKH_MI 1.33 P=454x10"",
(n=284) a > 0.05
HKH_SI 1.21
(n =137)
Average functional TSH_MI 0.65 P =8.89 x 10~ 3,
diversity per gene (n = 427) a < 0.01
TSH_SI 0.61
(n = 1267)
HKH_MI 0.65 P=372x 1071,
(n = 43) a > 0.05
HKH_SI 0.67
(n = 82)
Average core function TSH_MI 2.14 P =319 x 10~ %,
per gene (n = 820) a < 0.05
TSH_SI 2.05
(n = 2602)
HKH_MI 2.44 P=429 x10" 1,
(n = 209) a > 0.05
HKH_SI 2.32
(n = 548)

Additionally, protein functional diversity between the paralogous
pairs has long been treated as one of the key guiding factors of protein
evolution [43-47]. Although gene duplication initially leads to the re-
laxation of purifying selection, the subsequent functional divergence
between paralogs imposes selective constraints and slows down the
evolutionary rate [48,49]. In this study, we noticed that MI proteins
have a significantly higher functional divergence than SI proteins
within the TSH class but not in HKH class (Table 2), indicating the
selective constraints are higher for MI-TSH groups, which may be the
underlying cause of their slower evolutionary rates. Furthermore, it was
also reported that proteins performing core biological processes like
metabolism, protein synthesis and its transport are largely conserved
across species compared to the proteins involved in more regulatory
processes like transcription factor binding or signal transduction [47].
Using gene ontology (GO) terms for the GO domain ‘biological process’
(GO-BP) [47] we noticed that number of core functions differ in MI and
SI only within TSH but not in HKH (Table 2). However, the number of
regulatory functions does not differ between the MI and SI proteins
within both TSH and HKH classes. Thus, differences in conformational
diversity along with functional diversity and association with core
functions may impose higher selection pressure on TSH_MI compared to
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TSH_SI, whereas such differences are not attributable to MI and SI
classes of HKH proteins.

3.4. Role of tissue-specificity similarity and protein intrinsic disorder
content of protein partners on its evolutionary rate

Tissue-specific proteins making fewer interactions evolve faster than
highly interacting housekeeping proteins [16]. An earlier study also
deciphered the influence of interacting partners' properties on a pro-
tein's evolutionary rate [50]. Additionally, analysis of TSH and HKH
genes' partners revealed that partners of TSH genes evolve slower than
partners of HKH genes [22]. Thereby, we sought to investigate whether
the tissue distribution of TSH genes and their interacting partners has
any role in evolutionary rate. To do this, we constructed a tissue-spe-
cific similarity index according to the protein and its partner's tissue
expression profile (explained in the Materials and methods section).
Interestingly, we obtained a negative correlation (p = —0.189,
n=4128, P =1 x 10~ °) between tissue expression similarity with
evolutionary rate, which also demonstrated that when a gene and its'
interacting partner have a higher tissue-expression similarity, they are
evolutionary more conserved than gene having interacting partners
with lower tissue expression similarity (Fig. 4). Almost all of the
housekeeping genes share similar tissue similarity with their partners as
they are ubiquitously expressed in all tissue types.

Moreover, in an interaction network, SI proteins are more dis-
ordered than MI proteins [26,51] and perform transient interactions
with their partners. However, when the interacting partners' intrinsic
disorder content was analyzed in both TSH and HKH, we found sig-
nificantly higher protein disorder content in interacting partners of
TSH_SI than that of TSH_MI. Such a significant difference was not ob-
served between the two HKH groups (Fig. 5). Thus, both partner pro-
teins' tissue expression similarity, as well as intrinsic disorder content,
may impact on a dissimilar evolutionary rate between TSH_MI and
TSH_SI.

3.5. Influence of the studied factors on evolutionary rate

To examine whether each of the above mentioned parameters has a
significant influence on evolutionary rate, we performed Spearman's
rank correlation analysis by considering dN/dS as scalar dependent
variable and all other parameters as explanatory variables. We found
that dN/dS ratio upholds significant negative correlations with mean
miRNA count, expression level, conformational diversity, functional
diversity, core functional processes, domain similarity, partners'
average disorder content and tissue similarity with partners (Table 3).
Next, we intend to find out whether protein's own properties or its
partners' properties are more influential in guiding protein evolutionary
rate or if they act in a mutually exclusive way. For this we have per-
formed partial correlation analysis in two ways— we have controlled all

D TSH Diverged . TSH Shared  Fig- 4. Evolutionary rate (dN/dS ratio) differences between
tissue-specific genes with similar (TSHghareqa) and different
(TSHgivergea) tissue-specificity similarity with their inter-
_ 4 - -6 acting partners. Human-Mouse and Human-Chimpanzee
0.30 =1. X 0.60 1 = 1. X .
P=1.00x10 P=1.00x10 1:1 orthologs were used to calculate the dN/dS ratio. P-
values are provided in the figure.
0.20 1 1 0.40 E
wn [72]
= =
= <
Z Z
= =
0.10 1 0.194 0.20 1 0.385
0.00 0.00
TSH Diverged TSH Shared TSH Diverged TSH Shared

Human-Mouse orthologs

Human-Chimpanzee orthologs
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P=3.36x1072
1

P=1.38x10""
0.40

1
1

0.30 T

0.20 0.361
0.298

0.10

Interacting partners’ average
disorder content

0.00

HKH MI  HKH SI  TSH MI  TSH_SI

Classes of genes

Fig. 5. Interacting partners' average disorder content for a given hub protein with dif-
ference among MI and SI proteins of HKH and TSH class of genes. P value indicates
significance level derived from Mann-Whitney U test.

Table 3
Values of nonparametric correlation analysis using dN/dS ratio as a scalar dependent
variable [“*’ denotes significant differences].

Explanatory variables Spearman's rho (p) Significance level (two-

correlation tailed)
coefficient

Number of miRNA per gene -0.271 P=1x10"%,
(n = 3519) a < 0.001

Gene expression level —0.073 P=2x10"%
(n = 4148) a < 0.001

Conformational diversity —0.105 P=1x10"5,
(n = 4148) a < 0.001

Average of disorder residue 0.171 P=1x10"5%,
in interacting partner a < 0.001
(n = 1710)

Average functional —0.075 P =419 x 10”2,
divergence a < 0.05
(n = 742)

Tissue expression similarity -0.113 P=1x10"5%
of protein and its a < 0.001
partner
(4128)

the partners' properties (such as partners' average disorder content and
tissue similarity with partners) and noticed the correlation between
protein's own properties and evolutionary rate and also vice versa. The
result is delineated in (Table 4) which indicates that both the protein's
and its interacting partners' properties guide the evolutionary rate in a
mutually exclusive way. By using linear regression analysis we have
confirmed that evolutionary rate (dN/dS ratio) of proteins are in-
dependently influenced by its own properties like number of miRNAs
per gene (B = —0.142, P = 1.45 x 10~ ?) as well as protein's inter-
acting partner properties such as tissue expression similarity
(B = 0.080, P = 4.01 x 10~ 2) are also important for determining the
evolutionary rate of hub proteins across housekeeping and tissue spe-
cific genes.

4. Discussion

Integrating the protein-protein interaction (PPI) network with high-
throughput gene expression data, researchers divided all human PPI
network into sub-network of housekeeping or global and tissue-specific
or local interacting parts. Highly connected (hub) proteins within PPI
network are further divided into multi-interface (MI or party-hub) and
single-interface (SI or date-hubs) hubs, based on the number of their
interacting interface. MI-hubs, in general, evolve slower than SI hubs
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Table 4
Values of partial correlation analysis using dN/dS ratio as a scalar dependent variable [*’
denotes significant differences].

Correlation value

()]

Explanatory variables Significance level

Control for partners' properties

miRNA —0.152 P=737x10"% a < 0.01
(n = 307)

Core functions -0.116 P =417 x 10", a < 0.05
(n = 307)

Control for proteins' intrinsic properties
Average disorder content 0.115
in partners
(n = 304)

P=438x10"% a < 0.05

[7] due to evolutionary constraints acting on larger surfaces. When the
hub proteins from both the housekeeping (HK) and tissue-specific net-
work (TS) were classified into MI and SI hubs, we found that MI pro-
teins evolve slower than SI proteins in the TS PPIN, but not in the HK
PPIN (Table 1), a trend slightly different from previous study [10].
Similar results were obtained after splitting all proteins in ‘Small’
(below-median) and ‘Large’ (above-median) bins, depending on their
length, indicating the protein size has no significant impact on the
observations (Fig. 1). As evolutionary rate exhibits a strong negative
correlation with gene expression level (p = —0.168,
P =975 x 10~ %), we presumed that comparison of gene expression
level between MI and SI genes within HK- and TS-hubs might provide
insight into their evolutionary rate difference. We found a significantly
higher gene expression level in MI proteins in TSH class, whereas in
HKH class, both MI and SI express at a similar level (Fig. 2). Thus, gene
expression level seems to be a major determinant influencing the evo-
lutionary rate of MI and SI proteins within HK and TS network. How-
ever, gene expression is regulated by numerous factors, of which
miRNAs are a predominant regulator. Accordingly, the hub proteins are
likely to have a high level of miRNA regulation with diverse local and
global coordinated regulation [52]. Since regulatory stringency is
supposed to be similar in all housekeeping genes, we did not get any
significant difference in number of miRNA targets between MI and SI
hubs. Whereas, tissue-restricted genes with diverse local sub-networks
hold different regulatory constraint between MI and SI hubs, reflected
by a greater number of miRNA per gene in MI_TSH proteins (Fig. 3),
despite their higher gene expression, which is quite contradictory.
However, our result is in agreement with the fact that genes with more
miRNA target sites evolve slowly [53]. Now, the interaction between
proteins in PPIN may be aided by multiple conformations of the same
protein. This diverse conformation of a protein facilitates greater se-
lection pressure on the protein-coding gene to maintain the structural
domain/s via which the proteins interact. A strong negative correlation
(p=—0.186, P =1.75 x 10~ %) between dN/dS and protein con-
formational diversity, as observed in our study also strengthen this
hypothesis. Additionally, for duplicated genes, functional diversity be-
tween paralogs is a significant contributor to protein evolutionary rate,
as it builds up selective constraints that were reduced immediately after
gene duplication. It is fascinating to note that the global interacting
proteins (HKH-MI and HKH-SI) with cellular maintenance purposes do
not show a significant difference in conformational diversity or func-
tional diversity. Conversely, local network of TSH proteins significantly
differs in both conformational and functional diversity. This may be due
to the fact that sub-networks within TS PPIN might encounter diverse
selective pressure for maintaining these various expressional, con-
formational and functional similarities with their interacting partners.

Next, we intended to identify the contribution of interacting part-
ners on proteins' evolutionary rate. As proteins collaborate to function
as a unit, the impact of its partner on its evolutionary rate must be
sought out. A significant negative correlation between tissue expression
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similarities with evolutionary rate suggests that when a protein and its
interacting partners possess a higher tissue expression similarity, it
exhibit more evolutionary conservation, which is also supported by the
differences within TSH proteins when they show similar (TSHgpareq) and
different (TSHagivergea) tissue-specificity similarity with their interacting
partners (Fig. 4). The interacting partners of TSH_SI proteins was found
to content higher protein intrinsic disorder content than TSH_MI class
(Fig. 5), indicating their higher propensity to form transient tissue-
specific interactions that are signatures of this group of proteins.
Moreover, interactions involving proteins with lower tissue-expression
similarities are also essential to maintain the connections required for
the combined performance of the proteins in PPI network. Therefore,
linking housekeeping and tissue-specific genes are much vital for
maintaining the overall performance of a human body.

Furthermore, we performed a statistical analysis combining the
impact of both proteins' own property (such as expression level, number
of miRNA count, conformational diversity and other functional prop-
erties) and its partners' properties (like intrinsic protein disorder and
tissue expression similarity of the interacting protein partners) on
proteins' evolutionary rate. Our findings suggest that genomic novelties
are more introduced by intermodular hubs or SI-hubs in the tissue-
specific network only. Whereas, MI proteins remain highly conserved
within this network for performing core cellular processes and are
under more stringent regulation. Conversely, the housekeeping genes
with greater cellular maintenance functions might not permit the
HKH_SI to undergo mutation, as it could be lethal to the system. Our
findings illustrate that evolutionary rate of proteins is equally governed
by both its partner properties along with protein's own properties.

5. Conclusion

Our study demonstrates that lower evolutionary rate of MI hubs
than ST hubs is only present in the TSH but not in HKH of human PPIN,
an analysis done for the first time. We here, provide statistical evidence
to establish that both structural and molecular properties of protein as
well as interacting partners implicated for determining protein evolu-
tionary rate. Thus, our study makes new findings in exploring inter-
acting partner's properties in the conservation of global and local pro-
tein interaction networks.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2017.11.006.

Abbreviations

TS tissue-specific

HK housekeeping

PPIN protein-protein interaction network

TSH tissue-specific hub

HKH housekeeping hub

MI multi-interface protein

SI single interface protein

GO gene ontology

BP biological processes

dN nonsynonymous nucleotide substitution per nonsynonymous
site

ds synonymous nucleotide substitution per synonymous site

miRNA  micro-RNA
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ARTICLE INFO ABSTRACT

In Arabidopsis thaliana, primary metabolic genes (PMGs) are more evolutionarily conserved and intron-rich than
secondary metabolic genes. We observed that PMGs are more primitive and pan-taxonomically persistent as
compared to secondary (SMGs) and non-metabolic genes (NMGs). This difference in primitiveness and persis-
tence is primarily correlated with intron number and is independent of gene expression level. We propose a
twofold explanation behind higher intron enrichment in PMGs. Firstly, introns might increase protein versatility
amongst PMGs through alternative splicing, providing selective advantage of PMGs and making them more
persistent across diverse plant taxa. Also, multifunctional PMGs may acquire functional domains by increasing
the intronic burden. Additionally, single nucleotide polymorphisms (SNPs) accumulate at a higher rate in introns
as compared to exons. Moreover, a strong negative correlation between cumulative exonic SNPs density and
intron number indicates that introns may protect the exonic regions against the deleterious effect of these
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mutations, making them more conserved.

1. Introduction

Introns are non-coding sequences that interrupt the coding regions
of eukaryotic genes. They act as a hallmark of eukaryotic protein coding
genes [1-3] and are important components of genome adaptation [4].
Although, spliceosomal introns are common amongst eukaryotic gen-
omes, their density varies greatly across genomes as well as genes
within the same genome [5] and deciphering the uneven phylogenetic
distribution of introns is a major challenge for evolutionary genomics
[4]. Understanding the function and evolution of introns have gained
much attention since its discovery in the late 1970s [6]. The rapidly
accumulating fully sequenced eukaryotic genomes are also allowing
high-resolution reconstruction of evolutionary history of introns [7].

However, introns are thought to impose a considerable burden to
the host [7], and there could be at least three possible deleterious ef-
fects on gene expression [4]: First, spliceosomal introns requires a
spliceosome [7] and thus, splicing multiple introns is biologically ex-
pensive [8,9]. Second, intron transcription is costly in terms of time and
energy [10-12]. Third, malfunction of any of the snRNPs will have a
general detrimental effect on the cell [7]. Moreover, some studies
showed that highly expressed genes are compact, especially, concerning
intron size [13,14]. Finally, the mutational hazard hypothesis says that

* Corresponding author.
E-mail address: tapash@jcbose.ac.in (T.C. Ghosh).

https://doi.org/10.1016/j.ygeno.2017.12.003

non-coding sequences have slightly deleterious effects on fitness be-
cause of the hazard of accumulating deleterious mutations [15-17].
Thus, to minimize the mutational hazard, selection would preferentially
remove the excess DNA from genomes [5].

On the other hand, some recent studies highlight various advantages
of having introns [7,18]. It has been reported that introns increase the
protein diversity by exon shuffling and alternative splicing [5,19,20].
Some introns also regulate gene expression [5]. Moreover, introns play
a pivotal role in mRNA export, transcription coupling, splicing, etc.
[21] and also give rise to non-coding RNAs that participate in reg-
ulatory processes [22]. Introns can also boost the gene expression, and
this positive effect is called intron-mediated enhancement (IME) [23].

Indeed, the relationships between gene expression and intron
numbers have been a matter of debate. For example, Vinogradov
showed that in humans, housekeeping genes and tissue specific genes
differed in their genomic complexities and regulation [24]. While the
former category harbored compact, broadly and highly expressed
genes, the later was tissue specific. Such observations on the properties
of housekeeping genes were assessed using an older dataset. However, a
different trend was observed in the model plant Arabidopsis thaliana,
where primary metabolic genes, being mostly housekeeping in nature
exhibited not only elevated expression but also higher intron number
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[25].

Some recent studies have indicated that the relation between gene
expression and introns are much more complex than previously
thought. While in animals like Caenorhabditis elegans and Homo sapiens,
highly expressed genes contain less and compact introns [14], in plants
like Oryza sativa and Arabidopsis thaliana, it was found that highly ex-
pressed genes contained more and longer introns than genes expressed
at a low level [26]. However, when the intron length between model
plant and animal were compared, the introns were found to be rela-
tively shorter in the model plant Arabidopsis thaliana than the mam-
malian mouse model, indicating the cost of transcription is negligible
[4], which may favor intron retention. Previous studies indicated that
variation of intron size is influenced by various factors [27]. The me-
tabolic requirements and spatiotemporal economy might also act as
selective forces to resume surplus DNA [27]. For example, house-
keeping genes that are required to express at a certain level in every cell
comprise shorter introns than other genes in humans [28]. On the
contrary, Gorlova et al. [20] showed that evolutionary conserved and
primitive genes are more functionally important and have a more intron
enrichment in human, which opens up the opportunity for novel
functions. Genes expressed in pollens of A. thaliana have smaller introns
than genes expressed in sporophytes [29]. However, it is unclear to
what extent the genomic configuration of plant has been shaped by
functional requirement and natural selection [13].

It was earlier reported that in Arabidopsis thaliana, primary meta-
bolic pathway genes contain significantly more introns than secondary
metabolic pathway genes [25]. Additionally, the primary metabolic
pathway genes are evolutionary more conserved than secondary me-
tabolic pathway genes on the basis of the ratio of synonymous and non-
synonymous substitution rates (dn/ds). However, no correlation has
been found between dy/ds and intron number. This may not be sur-
prising as dy/ds, by definition, addresses the evolutionary rate of the
coding regions. Thus, the difference of intron number of these two ca-
tegories of genes in A. thaliana is still enigmatic. So, to address this
issue, we have taken a different approach here. Encouraged by the work
of Gorlova et al. [20], we have introduced, in this study, two new in-
dices named Persistence Index (PI) and Age Index (Al) to see whether this
intron number variation is correlated with the evolutionary history as
well as the taxonomic distribution of the concerned gene within the
plant kingdom. We have taken this approach as in plants, primary
metabolic pathways are almost omnipresent while secondary metabolic
pathways are restricted to specific plant groups [30]. Moreover, a gene's
level of evolutionary conservation reflects its functional significance
[31,32].

Thus, the objective of our study is to find whether higher intron
enrichment of primary metabolic pathway genes (PMGs) over sec-
ondary metabolic pathway genes (SMGs) confer any selective ad-
vantages to them which can answer the primitiveness and pan-taxo-
nomic distribution of PMGs. For analysis of PI and Al, we have selected
six other plant species along with A. thaliana whole genome sequences
are available. These include one dicot and two monocot species, one
species each from pteridophyta, bryophyta and algae. Our analysis
showed that in A. thaliana, these two indices differ in PMGs, SMGs and
NMGs (Non Metabolic pathway Genes) and both PI and Al are sig-
nificantly correlated with intron number. Moreover, introns accumulate
more single nucleotide polymorphisms in PMGs than SMGs as well as
NMGs and may act as buffer to protect the coding region of the genes to
accumulate mutations. Our study shows that introns confer some ad-
vantages for evolutionary conservation of primary metabolic pathway
genes in A. thaliana.

2. Materials and methods
2.1. Dataset preparation

We collected the whole genome data of Arabidopsis thaliana from
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Biomart interface [33] of Ensembl Plants [34] (http://plants.ensembl.
org/). The metabolic gene dataset was prepared from KEGG Database
(http://www.genome.jp/kegg) [35]. Initially, we obtained a dataset of
2512 metabolic genes out of which 2030 were PMGs and 482 were
SMGs. We filtered out 209 metabolic genes from our dataset which
participated in both primary and secondary metabolism. Finally, we
had 1821 PMGs and 273 SMGs. The rest of the protein coding genes
that did not participated in metabolism were categorised as non-me-
tabolic genes or NMGs. We compiled a dataset of 24,903 NMGs. The
complete gene list of PMG, NMG and SMG are provided in the Sup-
plementary file 1.

2.2. Estimation of conservation of genes

We used the pan-taxonomic distribution of metabolic genes as a
measure of conservation of the metabolic genes of A. thaliana rather
than the protein level conservation. Previously, Gorlova et al. have
formulated the conservation index as a measure of genes' degree of
preservation [20]. The concept of Conservation index as perceived by
Gorlova et al. [20] was further redefined by us as persistence index (PI)
and age index (AI) to study the pan-taxonomic distribution of A.
thaliana genes amongst the various plant taxa. PI reflects the distribu-
tion of orthologous genes of A. thaliana between the other plant taxa
while Al denotes the primitiveness of the orthologous genes. We have
detected orthologous set of genes in six of the below mentioned plant
species: A. lyrata (dicot), Sorghum bicolor (monocot), Oryza sativa var.
japonica (monocot), Selaginella moellendorffii (lycophyte), Physcomitrella
patens (moss) and Chlamydomonas reinhardtii (alga) [36]. These species
were ranked on the basis of their evolutionary distance from A. thaliana.
We assigned rank 0 to those genes which are unique to A. thaliana while
rank 6 was assigned to those genes which have orthologs on C. re-
inhardtii. Persistence index (PI) = Xx; /(N — 1), where x; represents
the count of orthologous gene across the selected plant taxa and N is the
total of plant species selected apart from A. thaliana. Age index (AI)
= x; /(N — 1), here x; represents the rank where the primitive most
ortholog of A. thaliana genes could be traced. The indices value ranges
from O to 1. ‘O’ depicting the genes confined only to A. thaliana and
recent origin while ‘1’ representing the most persistent and orthologs
that could be traced to all other groups and hence more primitive. To
explain the indices better, we put a hypothetical example where a gene
of A. thaliana is present in 3 other groups so its PI is 0.5, now if the most
primitive ortholog could be traced to Chlamydomonas, and then the Al
is 1. We also checked the primitiveness of the A. thaliana genes by using
Phylostratography (https://lighthouse.ucsf.edu/proteinhistorian/).
Here, we have categorised the A. thaliana genes according to their
phylogenetic origin into three groups-Arabidopsis (recent), Magnolio-
phyta (medium) and Viridiplantae (ancient).

2.3. Gene expression

Microarray expression data for A. thaliana was obtained from
PLEXdb (www.plexdb.org/) [37]. The accession number of expression
dataset is AT40 and the microarray platform used was ATH1-121501.

2.4. Intron enrichment

Both intron counts within each gene along with the intron length
considered separately for studying the intron enrichment of the re-
spective genes. The intronic coordinates were obtained from Biomart of
Ensembl Plants (http://plants.ensembl.org/biomart).

2.5. Other genomic parameters
Intron count, intron length, transcript length, GO terms accessions

and Pfam accessions were downloaded from Biomart of Ensembl Plant
(http://plants.ensembl.org/biomart).
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Multifunctionality was calculated by summing up the number of GO
biological process terms assigned to each gene identifier [38]. Domain
number was obtained by summing up the Pfam [39] accession against
each gene identifier.

2.6. Single nucleotide polymorphism (SNPs)

Data for Single Nucleotide polymorphism (SNPs) of the genome of
A. thaliana was also obtained from Biomart of Ensembl Plants. The
coordinates of the SNPs were mapped to both the exonic and intronic
positions of genes of A. thaliana. The mapping of coordinates was done
by using in-house PERL script.

2.7. Statistical tests

Statistical analyses were performed using SPSS v.13. Mann-Whitney
U test [40] was used to compare the average values of different vari-
ables between two classes of genes since the values were not normally
distributed in our dataset. For correlation analysis, we performed the
Spearman's rank correlation coefficient p [41], where the significant
correlations were denoted by P < 0.05. Z-test was also carried out to
study the proportion difference between groups.

3. Results and discussions

3.1. PMGs are more intron rich than SMGs and NMGs in A. thaliana as well
as in other plant groups

A previous study showed that PMGs are more intron-rich than SMGs
in A. thaliana [25]. Here, we have also studied the non-metabolic genes
of A. thaliana to get a complete picture of the intronic distribution in A.
thaliana regarding metabolic and non-metabolic genes. We have con-
sidered a total of 2094 genes as metabolic genes and 24903 genes as
non-metabolic genes (NMGs). Of these metabolic genes, 1821 genes are
associated with primary metabolism while 273 genes are related with
secondary metabolism. It was observed that PMGs on an average have
higher intron number as compared to NMGs and SMGs (Fig. 1) (Mann-
Whitney U test, P < 10~ ).

We then, analysed whether this trend (PMGs have higher intron
number than SMGs and NMGs) is present in other groups of plants too.
We have studied the differences between the average intron number in
NMGs, PMGs and SMGs in all the seven species (Fig. 2). For this, we
have considered the PMGs, SMGs and NMGs of A. thaliana and their
orthologous genes from the other six species. It was found that in all the

NS

\ \ ONMG
*% *% ™ PMG

OSMG

Average intron number
N
L
s

NMG PMG SMG

Fig. 1. Bar diagram showing the difference of intron number amongst different groups,
PMGs, NMGs and SMGs. ** denotes P < 0.01, * denotes P < 0.05 and NS denotes Not
significantly different values.
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investigated species, PMGs always showed more introns than SMGs and
NMGs. However, in C. reinhardtii (an aquatic alga), there is no sig-
nificant differences between the three groups while in P. patens, S.
moellendorffii and in the two monocot species, significant difference was
found between NMGs and PMGs. However, in the two species of Ara-
bidopsis, significant differences between PMGs and NMGs as well as
between PMGs and SMGs have been found with respect to intron
number. From these results, it can be concluded that PMGs gathered
significantly more introns than NMGs or SMGs over time. It was also
clear that early land plants showed a similar pattern before the
monocot-dicot divergence. After that, these two groups showed sig-
nificant differences with respect to intron number in PMGs, SMGs and
NMGs.

3.2. PMGs are more primitive and conserved than SMGs and NMGs in A.
thaliana

We have estimated taxonomic distribution of PMGs, SMGs and
NMGs using two unique indexes, i) Persistence index and ii) Age index.
It was observed that in Arabidopsis, protein coding genes showed a
marked variation in their degree of persistence across different plant
species. The persistence index as well as age index of a given gene
ranges from O (present only in Arabidopsis and of most recent origin) to
1 (present in all the investigated species and genes with most ancient
origin). It was observed that primary metabolic genes (PMGs) show
higher level of primitiveness and persistence as compared to NMGs and
secondary metabolic genes (SMGs) (Fig. 3 A and B). Although, PMGs
possessed significantly higher PI as well AI values compared to NMGs
and SMGs (P < 0.01), SMGs did not show any significant difference of
PIs and Als as compared to NMGs (P > 0.05) (Fig. 3). It was observed
that there was a significantly strong positive correlation (Spearman's
p=0.993, P = 10~ %, N = 26997) between PI and Al indicating that
genes with most ancient origin are the ones that are more persistent
across wide range of plant genomes. We also checked the phyletic age
of the metabolic genes using Phylostratography (https://lighthouse.
ucsf.edu/proteinhistorian/). It was observed that majority of the genes
of PMGs have ancestral origin than SMGs and NMGs. However, the
proportion of PMGs decrease gradually with the gene age. We also
observed that the NMGs are mostly quite recent in their origin (Fig. 4).
As PMGs in A. thaliana are more ancient in terms of their origin, as
showed more PI, Al and ancient phyletic origin than the other two
groups and they also retained more introns over time, there must be
some selective advantage of retaining more and more introns in PMGs.
Therefore, from here onwards, we would investigate the role of intron
number in guiding the persistence of Arabidopsis genes.

3.3. Intron number is correlated with persistence index in A. thaliana

We observed a strong positive association between persistence index
and intron enrichment (Spearman's number = 0.297,
P <10°°% N = 26997, Spearman's  Pprintron  length = 0.225,
P < 107 % N = 26998). In animal genomes, previous studies sug-
gested that persistence of genes or its conservation is highly correlated
to its intron enrichment [20,42]. In agreement with these studies, our
study also found a strong association between intron enrichment and
gene persistence index. In addition to it, our study also showed that
genes that are older and has wider pan-taxonomic distribution, have
higher intron enrichment as compared with genes of more recent origin.
Next, we intended to find out whether total intron lengths or intron
number was the more prominent predictor of persistence. Intron
number per gene was found to correlate highly with total intron length
(Spearman's p = 0.809, P < 10~ %, N = 26997). So, we performed a
partial correlation between PI and intron number after controlling for
total intron length (Spearman's p = 0.113, P < 10~ °) and observed
that there was a significant impact of intron number over PI. On the
contrary, when intron number was controlled and correlation between

PPL-intron


https://lighthouse.ucsf.edu/proteinhistorian
https://lighthouse.ucsf.edu/proteinhistorian

D. Mukherjee et al.

Genomics xxx (Xxxx) XxXx—xxx

Fig. 2. Comparison of intron number between PMGs, SMGs
- T and NMGs across diverse taxonomic plant groups.** de-
notes P < 0.01, * denotes P < 0.05 and NS denotes Not
significantly different values.

A. thaliana A. lyrata O. sativa

~13 Mya ~50-70 Mya

total intron length and conservation was noticed, it was observed that
there was a very weak significant correlation between them (Spear-
man's p = 0.044, P < 10~ °). Thus, the effect of intron length was
negligible over conservation.

3.4. Difference in conservation of PMGs, NMGs and SMGs in A. thaliana is
independent of gene expression levels

Gene expression level has been shown to be a major determinant of
protein level conservation in plants and animals [43]. Henceforth, we
were interested to study the effect of intron number over gene ex-
pression level of A. thaliana. It has been previously proposed that intron
number negatively influences gene expression level in animals [20,42].
However, we obtained a strong positive correlation between intron
number and gene expression level (Spearman's p = 0.253 P < 105,
N = 21049). Our results are in agreement with previous work [26]
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which also showed that highly expressed genes in plants contain more
introns. Hence we were interested to study the effect of expression over
conservation of PMGs. It was observed that PMGs have significantly
higher expression level as compared to NMGs and SMGs. It was also
observed that gene expression level positively correlates with PI
(Spearman's pp; = 0.312 P < 10~ %). Next, we intended to explore
whether the difference of PI between PMGs, NMGs and SMGs were due
to their difference in the expression level. In this context, we binned
gene expression values into four bins-Binl (containing genes having
gene expression value 2.00-5.00), Bin2 (gene expression value
5.00-8.00), Bin3 (gene expression value 8.00-11.00) and Bin4 (gene
expression value > 11.00). Bin4 also showed absence of any SMGs. It
was observed that in each bin, PMGs has significantly higher persis-
tence as compared to NMGs and SMGs except Bin3 where expression
level of PMGs and SMGs were insignificant (Fig. 5A).This indicates that
difference of PI between PMGs and NMGs as well as PMGs and SMGs
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Fig. 3. Bar diagram showing the significant difference of (A) Persistence index and (B) Age Index, amongst different groups, PMGs, NMGs and SMGs.** denotes P < 0.01, * denotes

P < 0.05 and NS denotes Not significantly different values.
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Fig. 4. Proportion of genes in three categories of phyletic age. All the proportions are
significantly different (Chi-square test, P < 0.001).

are independent of expression level. It is also noticeable that there is a
constant rise in PI up to category 3 of expression level and at category 4
(Highest expression values) there were no SMGs, so we could only
compare PMGs and NMGs at this category. Interestingly, category 4
showed a lower magnitude of conservation level. This once again in-
dicated that relationship between gene expression and conservation is
non-linear. Next we analysed whether intron enrichment has an influ-
ence in governing the PI difference between PMGs, NMGs and SMGs.
For this we binned intron number into four bins-Bin1 (containing genes
having intron number 1-10), Bin2 (intron number 11-20), Bin3 (intron
number 21-30) and Bin4 (intron number > 30). Bin 1 represented the
group of genes with least number of introns, while Bin4 had genes with
highest intron numbers. Bin3 and Bin4 also showed absence of any
SMGs. It was observed that PI of PMGs, NMGs and SMGs did not follow
any particular trend (Fig. 5B). This once again revealed that intron
enrichment has a role in determining the conservation of the genes.

We propose a two-fold explanation behind such an observation.
Firstly, it has been proposed earlier that older genes are under more
complex regulation [44]. Introns have a definitive effect over gene
expression regulation in both animals [45] and plants [46]. Hence,
acquisition of large number of introns in plants could be due to the
result of more complex regulation of older and highly persistent genes.
Given the fact that intron number is correlated with gene conservation
and intron number gradually increases with increase in degree of per-
sistence, it is questionable that, what roles introns have in maintaining
gene's degree of conservation.

Genomics xxx (Xxxx) XxXx—xxx

3.5. Introns increase protein versatility

Previously it has been proposed that gradual segmentation of a
given gene into smaller exonic regions interrupted by introns may fa-
cilitate alternative splicing and thus might increase protein versatility
of the concerned gene [47]. It is quite obvious that genes with high
protein diversity would tend to be more conserved than genes that yield
fewer number of protein isoforms [20]. In other words, as genes grew
older with time, it acquired many different number of spliced variants
which increases its diversity in both transcript and protein level [48].

Intron enrichment is considerably higher in PMGs and they also
acquire higher number of spliced variants as compared to NMGs and
SMGs. As PMGs are older and are more persistent across diverse plant
taxa, it is more likely for them to gain different molecular functions
with time. It has been previously proposed that PMGs are more multi-
functional in nature as compared to SMGs [25]. This high multi-
functionality may be attributed to higher number of spliced variants
and increased protein versatility. Previous studies have suggested in-
tron number might increase protein versatility through alternative
splicing [49]. Here we investigated that whether introns in A. thaliana
increases protein diversity by the mechanism of alternative splicing. In
this context, we estimated the number of unique proteins and unique
transcripts per gene of PMGs, SMGs and NMGs respectively. It was
observed that PMGs possessed significantly higher splice variant and
protein diversity as compared to SMGs and NMGs (Table 1). We found
that transcript and protein diversity (measured as number of unique
transcript ids/protein ids) has a significant strong positive correlation
with intron number (Spearman's pingon no-transcript count = 0.214
P < 10~ % Spearman's pintron no-protein count = 0.210 P < 10~ ®). The
increased diversity in transcript and protein level could be due to al-
ternative splicing of these genes. It was also revealed that PI is also
correlated with multifunctionality (Spearman's pprmuitifunctionality USing
GO biological process terms = 0.219, P < 10~ % Spearman's pprmult-
functionality USing Pfam domain number = 0.017, P = 1.2 x 10~ 2) and
transcript count (Spearman's pprranscript count = 0.117, P < 10~ ).
Overall our data suggests that acquisition of large number of introns
could eventually increase protein versatility through exon shuffling
mechanisms which may ultimately cause conservation of genes in A.
thaliana.

In order to gain multiple functions, primary genes might harbour
elevated number of functional domains within them. It was observed
that PMGs were indeed enriched in functional domains as compared to
the SMGs (Mann-Whitney U Test, P < 10~ %). Thus, we hypothesize
that intron enrichment in primary genes could be correlated with
functional domain acquisition. In agreement to our hypothesis, we
observed a significant correlation between functional domain count and
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Fig. 5. Bar diagram showing the difference of Persistence index between PMGs and NMGs in each bin of (A) gene expression and (B) intron number. The expression values were divided
into 4 bins: 2.0 < Binl < 5.0, 5.0 < Bin2 < 8.0, 8.0 < Bin 3 < 11.0, Bin 4 > 11. The intron numbers were divided into 4 bins such that: 1 < Binl < 10, 11 < Bin2 < 20,
21 < Bin3 < 30, Bin 4 = 30. ** denotes P < 0.01, * denotes P < 0.05 and NS denotes Not significantly different values.



D. Mukherjee et al.

Table 1
Details of Mann Whitney U test of transcript and protein diversity between PMGs, NMGs
and SMGs of A. thaliana.

PMGs NMGs SMGs P-values

Transcript diversity

Mean 1.44 1.28 1.25 Ppmg-nmg = 107°
Standard deviation 0.78 0.64 0.57 Ppmc-smg = 107°

Pxmcsmg = 0.53

Protein diversity

Mean 1.43 1.30 1.25 Ppmcmg = 107°
Standard deviation 0.79 0.69 0.57 Pomc-smg = 107°

Pnmc-smg = 0.46

intron number in PMGs (Spearman's pdomain no-intron no = 0.176,
P < 10™%). Our results thus, indicate that introns increase protein
function by acquisition of functional domains, and thus plays important
role in protein multifunctionality.

3.6. Introns may serve as buffer for mutations in coding regions

Another probable explanation behind acquisition of high number of
introns could be the fact that introns being themselves non-coding
might retain mutational disturbances and thus buffers the coding exons
from mutations, as explained by Jo and Choi [18]. We, thus, analysed
the single nucleotide polymorphisms (SNPs) as the mutational force. A
strong negative correlation between intron number and exonic SNP
density (Spearman's p = —0.312, P < 10~ °) accompanied by a sig-
nificantly higher enrichment of SNPs in the intronic regions as com-
pared to exonic ones suggest that along with alternative splicing, intron
enrichment is helpful for persistence of old genes to protect themselves
from mutations. On the other way round, SNPs in intronic region could
also guide splicing as observed in many different previous studies [50].
In this study, we have also found that intronic SNP density is sig-
nificantly correlated with transcript count (Spearman's p = 0.155,
P < 10~ % in A. thaliana. These results show that SNPs do have a role
in alternative splicing mechanisms. Moreover, exonic SNP density was
found to have a slight yet significant negative correlation with tran-
script count (Spearman's p = — 0.074, P < 10~ ®). Thus, proteins with
fewer number of splice variants have a slightly more chance of gath-
ering SNPs in the exonic regions. Thus, we have searched the intronic
regions for the presence of SNPs and tried to understand their role in
conservation.

Previous studies [51] suggested that mutation through single nu-
cleotide polymorphisms (SNPs) are more in the intronic regions of the
genes as compared to the exonic counterparts. It has also been sug-
gested that introns could possibly buffer mutations and protect the
exons [18]. In this study, we hypothesized that introns may absorb
more mutational shocks which allow the genes to retain normal protein
function and hence be conserved. To elaborate this, we studied the
distribution pattern of SNPs. We have observed a significantly higher
count of SNPs in the introns than exons in all the groups (Mann-
Whitney U test, P < 0.01). Here, we observed introns of PMGs have
highest SNP density followed by NMGs and least in SMGs and NMGs
have significantly more exonic SNPs than PMGs and SMGs (Fig. 6 A and
B). However, exonic SNP density of PMGs and SMGs did not vary sig-
nificantly. In addition to it, as shown above, we obtained very strong
negative correlation between total exonic SNPs density and intron
number, indicating introns could possibly absorb the mutational load of
the genes, which is also supported by the previous notion of Jo and Choi
[18]. Finally, intronic SNP density showed a slight yet significant cor-
relation with PI (Spearman's p = 0.079, P = 2.35 x 10~ 9). However,
there was no correlation of total exonic SNP density with PI (Spear-
man's pp; = 0.011, P = 0.362). This shows that intronic SNPs indeed
have a role in evolutionary conservation of genes. To further authen-
ticate the study, we generated the SIFT score of the SNPs of the coding
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exons of PMGs, NMGs and SMGs using the webserver (SIFT 4.0) [52].
Density of deleterious mutations (no. of deleterious mutations/cds
length) was highest in SMG (0.01), followed by NMG (0.008) and PMG
(0.006) (Sig at P < 0.01, Mann-Whitney U test). Moreover, intron
number is significantly negatively correlated with this density of dele-
terious mutations (Spearman's rho of —0.036, P < 0.001). We have
also showed that intron number is highest in PMG, followed by NMG
and SMG. Surprisingly, this is also true for density of tolerated muta-
tions (no. of tolerated mutations/cds length). It was highest in SMG
(0.05), followed by NMG (0.048) and PMG (0.041) (Sig at P < 0.01,
Mann-Whitney U test). Moreover, intron number is significantly nega-
tively correlated with this density of deleterious mutations (Spearman's
rho of —0.167, P < 0.001). Thus, it is clear that more number of in-
trons somehow preventing the gene from accumulating more mutations
(be it deleterious or tolerated) in the coding regions. However, it may
be the fact that as introns rich genes are highly expressed, mutation
accumulation is less [26]. We also conducted the cause and effect es-
timation of intron number and deleterious/tolerated mutations to un-
derstand the influence of the factors based on van der Lee et al. [53].
The result in both cases reveals the number of introns to be the cause of
mutations be it deleterious or tolerated (Table 2) The presence of in-
trons within the coding regions brings down the overall mutation of the
exons, leading to the functional conservation of vital primary metabolic
genes.

4. Conclusions

Primitiveness and conservation of metabolic genes is largely corre-
lated with intron number and is expression independent. Unlike that of
animal genomes, where housekeeping genes possesses shorter introns
and have compact genetic architecture; Primary metabolic genes of A.
thaliana (which has a basic housekeeping functionality) represent quite
a different and unique set of characters. As a matter of fact PMGs share
a combination of features that partially resembles both housekeeping
and tissue specific genes. PMGs are pan-taxonomically conserved like
that of housekeeping genes, but unlike animal housekeeping genes
entails higher intron enrichment. Plants being autotrophic can harness
their own energy. Hence, energy cost for processing large number of
introns might not be a limitation amongst PMGs. At the same time
primary genes, in course of evolution could give birth to secondary
metabolic genes, which are again tissue specific. Thus, primary genes
represent a complex trade-off between housekeeping and tissue specific
genetic architectures in A. thaliana.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2017.12.003.
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PMG primary metabolic gene

SMG secondary metabolic gene

NMG non metabolic gene

PI persistence index

Al age index

SNP single nucleotide polymorphism
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Table 2
Conditional probability study between intron number and Tolerated/Deleterious muta-
tions.

Tolerant mutation

High (Ty) Low (Ty)
Intron number High (Iy) 4077 7432 11509
Low (I) 9138 5788 14926
13,215 13220
Deleterious mutation
High (Dy) Low (Dy)
Intron number High (I 5983 5559 11542
Low (I) 7337 8057 15394
13320 13616

Event(E) Condition (C) Probability (Event | Condition)

= P(EnC)/P(C)

A Deleterious High intron

P(Dy|Iy) = 2222 = 0.482

mutation low number 11542
High intron Low deleterious P(Ix|Dy) = 5559 _ 9.408
number mutation 13616

B  Tolerant mutation High intron P(Ty|Iyy) = 7432 _ 0644
low number 11542
High intron Low tolerant P(Iy|Ty) = 7432 _ 0562

13220

number mutation
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