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A B S T R A C T

Integrating gene expression into protein-protein interaction network (PPIN) leads to the construction of tissue-
specific (TS) and housekeeping (HK) sub-networks, with distinctive TS- and HK-hubs. All such hub proteins are
divided into multi-interface (MI) hubs and single-interface (SI) hubs, where MI hubs evolve slower than SI hubs.
Here we explored the evolutionary rate difference between MI and SI proteins within TS- and HK-PPIN and
observed that this difference is present only in TS, but not in HK-class. Next, we explored whether proteins' own
properties or its partners' properties are more influential in such evolutionary discrepancy. Statistical analyses
revealed that this evolutionary rate correlates negatively with protein's own properties like expression level,
miRNA count, conformational diversity and functional properties and with its partners' properties like protein
disorder and tissue expression similarity. Moreover, partial correlation and regression analysis revealed that
both proteins' and its partners' properties have independent effects on protein evolutionary rate.

1. Introduction

Cells are the fundamental unit of life. Except for the unicellular
ones, every living organism possesses diverse types of cells adapted to
perform specialized functions. The functions of each cell are mediated
by the molecular machinery, of which proteins play an essential part.
Proteins interact with each other and perform almost all the funda-
mental life processes. Such interactions involve interfaces or domains,
which execute the functions of the protein. Protein domains play a
crucial part in molecular evolution since these are used as structural
building blocks and may create proteins with discrete functions due to
exon shuffling [1–3]. The advancement in high-throughput protein in-
teraction data helps to analyze protein functions from the network
perspective. Moreover, within the whole protein interaction network,
there are some small, densely linked components formed by the inter-
actions between proteins, nucleic acids, and other small molecules, and
are weakly connected to the rest of the protein-interaction network.
These components are termed as modules [4]. Recent advances in
discovery and revision of the proteins in modules using computational
biology have enabled us to model these protein-protein interactions as a
network where proteins represent the nodes with interactions as links
between the nodes.

Inside the protein-protein interactions network (PPIN), proteins
with a high degree of connectivity are found to be essential and are
likely to perturb the PPIN upon deletion, misfunction or misregulation
[5]. These proteins, named as hub, are distinct from lesser connected
proteins or non-hubs and are evolutionary more conserved. Although
most of the earlier studies featuring hub proteins from evolutionary
perspective compared hub and non-hub proteins in PPIN, more recent
studies aim at detailed analysis of hub proteins. One such study by Han
et al. classified hub proteins into two groups - multi-interface hub
proteins (MI or party hubs) and single interface hub proteins (SI or date
hubs) based on protein domain architecture and correlated expression
of the interacting partners [6]. Comparing the evolutionary rate be-
tween these MI and SI hubs revealed discrete differenceseMI proteins
were found to be evolutionarily more conserved than SI proteins [7],
which may be mainly due to selective constraint acting on a larger
region in MI proteins, as it usually possesses more interacting surfaces.
Additionally, the party hubs mediate within-module interactions (intra-
module), whereas date hubs integrate between modules (inter-module)
[7]. However, the SI proteins acting on various modules face stronger
consequences when deleted than the less pervasive densely connected
MI proteins, due to their association with diverse functions [8]. Besides,
a few studies have been carried out to understand the structural
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(conformational) and functional role of these hub proteins [9,10]. The
functions of a protein are mediated mainly by its structure. Although
each protein is thought to possess definite three-dimensional con-
formation determined by its amino acid sequence, that may not be the
only conformation adopted by the protein within a cellular system [11].
The magnitude of conformational diversity encompasses structural
changes like fluctuation of protein's side chains and the movement of
loops and secondary structures, even to the global rearrangement in
protein tertiary structure [12].

Further insights into human PPIN classified topological variation
based on gene expression data. Based on gene expression breadth, all
genes are grouped as either tissue-specific (TS), or housekeeping (HK).
Previous studies revealed many differences between the HK and TS
genes in humans. Human HK genes are more compact in structure,
containing shorter intron length, 5′ UTR length and coding sequence
length [13]. Consistent with this, HK genes are enriched in shorter re-
petitive sequences such as Alu-elements, but depleted in longer re-
petitive sequences like Long Interspersed Nuclear Element 1 (LINE-1)
elements [14]. Additionally, elucidation of evolutionary rate differ-
ences among these two groups resulted in similar findings across or-
ganisms as diverse as unicellular fungi to humans, the housekeeping
genes (HK) evolve slower than tissue-specific genes (TS) [15]. Ac-
cordingly, the whole PPI network was also grouped into tissue-specific
or local network and housekeeping or global network, where TS hubs
(TSH) evolve faster than HK hubs (HKH). These TSH also feature longer
genes, less protein expression abundance, tight regulation and greater
protein intrinsic disorder content than HKH [54]. Additionally, within
the PPI network, HK genes are more central and are associated with
core cellular processes whereas TS genes are more peripheral with
modified core cellular processes as well as regulatory and develop-
mental functions [16–18]. However, these findings remain confounding
as some TS genes are reported to evolve slower than even this HK class
of genes [19–21]. To address this issue, Podder et al. classified human
proteins into MI and SI counterparts and analyzed the evolutionary rate
of TS and HK genes between these two groups. They found that within
MI proteins, both TS- and HK-genes show similar evolutionary rates,
whereas, within SI proteins, HK genes evolve slower than TS genes
[10]. Furthermore, recent studies based on PPI-network properties
highlights the impact of the partner proteins on proteins' evolutionary
rate [16,22], as the interacting partners also contribute to the central
node evolution via the domain-domain interaction [23]. Such analysis
on HK- and TS-hubs revealed that interacting partners of the TSH are
more conserved than HKH with diverse subcellular localization [22].
However, these studies lack detailed insights into the protein interac-
tion network-based properties and the influence of interacting partners
on the evolutionary rate. Therefore, a detailed spatially resolved ana-
lysis is required to explain the evolutionary rate variation between
these two hub classes.

In this study, we delved deep into the understanding of protein
evolutionary rate based on their expression breadth (whether house-
keeping or tissue-specific) and the contribution of domain number
(whether single or multiple) to it. We tried to identify at which level the
evolutionary conservation endures. Furthermore, we sought to explore
which among the two: protein's own property or partner properties
influence the evolutionary rate of proteins the most.

2. Materials and methods

2.1. Retrieval of dataset

We obtained tissue specific gene expression data from EMBL-EBI
expression atlas (https://www.ebi.ac.uk) for “baseline” expression
where the expression level of each gene in normal and untreated con-
ditions. Then we calculated tissue specificity index τ [24] of each gene
for tissue specificity using the following formula [10]e
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(where, ηH= number of human tissues examined and SH (i, max)
= highest expression signal of gene i across the ηH tissues). The value
ranges from 0 to 1, where genes with τ-values close to ‘0’ are considered
to be more towards housekeeping and those with τ-values close to ‘1’
are considered as tissue-specific (TS). τ= 0 represents equal expression
of the gene across all tissue, i.e. housekeeping (HK) genes. We sorted
our dataset according to an increasing τ values and obtained genes from
extreme 20% of the population from both ends. Thereby, we obtained
1198 HK and 7767 TS genes.

2.2. Protein connectivity data retrieval and interacting domain
identification

Protein-protein interaction data was obtained from BioGRID (re-
lease 3.4.130) (https://thebiogrid.org/) [25]. Genes with at least five
interacting partners were considered to be highly connected or hub
proteins. We obtained human protein sequences from the UCSC genome
browser (http://genome.ucsc.edu). Interacting domains were retrieved
from Pfam repository (http://pfam.sanger.ac.uk/) [55]. The hypothesis
behind the Pfam data retrieving was that the interacting domains confer
binding capability to protein regions. The cut-off values used for do-
main assignment are (1) e-value of alignment e< 1.0 × 10− 4

; (2) domain
length > 12; (3) matched sequence length > 80% of domain length
[26]. In particular, single interface proteins were designated as having
few interaction interfaces (two at most) and multi-interface proteins
having more than two interacting interfaces [27]. The numbers of
HKH_MI and HKH_SI proteins are respectively 303 and 895. The num-
bers of MI and SI proteins belonging to TSH PPIN are 1705 and 6062,
respectively.

2.3. Estimation of evolutionary rate

The evolutionary rates of human genes were calculated by dividing
non-synonymous substitution rate (dN) with synonymous substitution
rate (dS). The dN and dS values were retrieved from BioMart interface
of Ensembl Version 87 (http://www.ensembl.org/biomart/martview)
[28] for Homo sapiens (GRCh37) using one to one Human-Mouse as well
as Human-Chimpanzee orthologous pairs.

2.4. Prediction of miRNA targets sites and gene expression level assessment

The number of miRNA targets per gene were obtained from Tar-
getScan (release 6.2) (http://www.targetscan.org) [29] for its more
reliable data over other databases. Tissue-wise RNA-seq gene expres-
sion data was obtained from the human protein atlas [30]. Average
gene expression level of HK genes was calculated by considering only
those tissues where it shows higher than mean expression level calcu-
lated for all tissues. Expression level for TS genes represents only the
tissue where the desired gene is expressed at its highest level.

2.5. Collection of conformational and functional annotation

Protein conformational diversity data was acquired from CoDNaS
database [31]. The database utilizes a total of 70,467 PDB structures
(Protein Data Bank, a repository of biological macromolecular struc-
ture) [32], representing a set of 9398 monomeric proteins of the protein
data bank. Conformational diversity was measured as the maximum
RMSD (root-mean-square deviation measuring the average distance
between the superimposed atoms) between available conformers of a
protein. RMSD values were normalized to RMSD100 for all proteins
with> 40 residues [33]. This provided us with 1094 human proteins
with corresponding conformational diversity values.
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Next, we acquired the protein-coding human genes with functional
annotation from Ensembl Genome Browser (http://www.ensembl.org/)
[28] for “biological process” GO classification for individual gene and
its paralog. Functional divergence was determined using Czekanowski-
Dice distance formula [34].

=
∆

∪ + ∩

Functional distance (i, j)
Number of(Terms (i) Terms(j))

[Number of(Terms(i) Terms(j)) Number of (Terms(i) Terms(j))]

Here, i represents GO terms of individual human genes, j represents
GO terms of the paralogous genes, Δ corresponds to the symmetrical
difference between the GO term sets of two genes, ∪ and ∩ represents
the non-redundant and common GO terms, respectively.

2.6. Protein disorder content estimation

Protein disordered residues were predicted from one of the top dis-
order predictors: IUPred algorithm [35,36]. It provides a fair estimation
of disorder residue by assigning disorder tendency score for each residue
by their ability to form favorable pair-wise contacts with neighboring
amino acids [37]. Protein disorder content was defined as the fraction of
the total number of such disordered residues within a protein. Moreover,
flexible loops were trimmed down from the calculation by taking only 30
or more consecutive predicted disordered residues at a stretch. Other
stretches were denominated as ordered regions [38].

2.7. Protein tissue expression similarity calculation

As described earlier, proteins were designated as tissue-specific or
housekeeping depending on their τ (tau) value. Furthermore, the name
of each tissue where the protein is expressed with the highest level of
expression along with the higher bin of tau value was denoted for that
tissue-specific (Top 20%). Now, these tissue names for each gene data
was integrated with protein-protein interaction data among protein and
its partner. Tissue expression similarity between a protein (y) and its
interacting partner (z) was calculated as

= − ∆
∪
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Tissue expression similarity ( , )

1 Number of ( ( ) ( ))
[Number of ( ( ) ( ( ))
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Here, ‘Tissues(y)’ and ‘Tissues(z)’ represent the name of tissues where
the protein ‘y’ and its interacting partner ‘z’ is expressed, respectively.,
Δ corresponds to the symmetrical difference between the tissues where
the two proteins are expressed, ∪ and ∩ represents the nonredundant
and common tissues, where proteins ‘y’ and ‘z’ are expressed.

2.8. Statistical analyses

All the statistical tests were performed using the SPSS (20.0)
package [39]. Non-parametric Spearman's correlation test was used to
evaluate the correlation coefficient between two parameters. Difference
between parameters was calculated with Mann–Whitney U test. Linear
and categorical regression analysis was performed using ANOVA model
for understanding the relationship of the parameters with dN/dS ratio.

3. Results

3.1. Analysis on evolutionary rate difference among different hub protein
classes

In this study, we explored the effect of tissue-specificity in mod-
ulating the evolutionary rate differences of human multi- and single-
interface hubs. Previous studies suggest that highly connected or hub-
proteins evolve slower than lowly connected or non-hub proteins [40].

Additionally, housekeeping genes are well-known for their slower
evolutionary rate (than the tissue-specific genes) and so are the multi-
interface hubs (than the single-interface hubs) [15,27]. In our analysis,
we used the high-throughput RNA-seq data from the Human Protein
Atlas [30] to obtain housekeeping and tissue-specific genes and phy-
sical protein interaction data from Biogrid [25] and co-expression data
from [30] to obtain multi-and single-interface proteins and achieved
similar trends for both the cases, that is, multi-interface (MI or party-
hubs) evolve slower than single-interface (SI or date hub) proteins
(Table 1). However, the evolutionary rate differences between MI and
SI proteins within the housekeeping and tissue-specific groups are not
yet clear. Therefore, we subdivided human housekeeping-(HKH) and
tissue-specific hub (TSH) genes into MI and SI proteins and obtained
four classes: HKH_MI, HKH_SI, TSH_MI and TSH_SI (Supplementary
Tables S1A and S1B in Supplementary File 1). Comparing the evolu-
tionary rate differences between MI and SI proteins in HKH and TSH
groups using dN/dS ratio revealed that significant difference exists in
the case of TSH_MI and TSH_SI (TSH_MI < TSH_SI) but not in the case
of HKH_MI and/SI (Table 1). However, as the MI proteins contain larger
regions under selective constraint, we investigated the influence of
protein size on our findings. We classified the proteins in our dataset
into ‘Small’ and ‘Large’ classes depending on the median protein length.
We found that the protein length has no influence in our dataset as the
trend remains the same in both the length bins (Fig. 1). To explain this
further, we studied the most probable parameters leading to such

Table 1
Average dN/dS ratio of different hub-proteins calculated using Human-Mouse and
Human-Chimpanzee orthologs. P-value indicates significance level derived from Mann-
Whitney U test [‘*’ denotes significant differences].

Orthologous gene
pair

Category Average dN/
dS

Significance level

A. Difference between the evolutionary rate (dN/dS ratio) of tissue-specific hubs (TSH)
and housekeeping hubs (HKH) using mouse and chimpanzee as outgroups

Human-Mouse TSH
(n= 3691)

0.158 P = 1.00 × 10−6⁎,
α < 0.001

HKH
(n= 457)

0.094

Human-
Chimpanzee

TSH
(n= 5248)

0.332 P = 9.50 × 10−4⁎,
α < 0.001

HKH
(n= 449)

0.287

B. Difference between the evolutionary rate (dN/dS ratio) of multi-interface (MI) and
single-interface (SI) hubs using mouse and chimpanzee as outgroups

Human-Mouse MI
(n= 890)

0.133 P = 1.00 × 10−6⁎,
α < 0.001

SI
(n= 3258)

0.156

Human-
Chimpanzee

MI
(n= 1292)

0.293 P = 1.00 × 10−6⁎,
α < 0.001

SI
(n= 4405)

0.339

C. Difference between the evolutionary rate (dN/dS ratio) of MI- and SI-hubs within
TSH and HKH genes using mouse and chimpanzee as outgroups

Human-Mouse TSH_MI
(n= 770)

0.141 P = 1.00 × 10−6⁎,
α < 0.001

TSH_SI
(n= 2921)

0.163

HKH_MI
(n= 120)

0.832 P = 6.33 × 10−2,
α > 0.05

HKH_SI
(n= 337)

0.991

Human-
Chimpanzee

TSH_MI
(n= 1167)

0.214 P = 1.00 × 10−6⁎,
α < 0.001

TSH_SI
(n= 4081)

0.284

HKH_MI
(n= 125)

0.132 P = 4.38 × 10−1,
α > 0.05

HKH_SI
(n= 329)

0.285
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consequence. We focused on not only the protein but also their inter-
acting partners' structural as well as functional properties guiding such
evolutionary rate differences.

3.2. Role of gene expression and regulation on evolutionary rate of MI and
SI hubs

One of the major determinants of protein evolution is expression
level. Highly expressed genes evolve slowly, a phenomenon known as
E-R anti-correlation [41]. We calculated the average expression level of
MI and SI hubs across HKH and TSH classes and observed that MI
proteins are significantly more highly expressed than SI proteins in TSH
class whereas, no significant difference in average expression level was
observed in these two groups of HKH class (Table 1, Fig. 2). Ad-
ditionally, genes with a higher number of miRNA targets are also re-
ported to be conserved [15]. Consistent with this, we found that

TSH_MI hubs are targeted by significantly more miRNAs than TSH_SI
hubs (Fig. 3). However, the HKH_MI and HKH_SI did not show any
difference in average miRNA number among them. Together, these
results may serve as a probable reason for evolutionary discrepancy
among TSH_MI/SI and HKH_MI/SI.

3.3. Role of structural and functional properties on the evolutionary rate of
MI and SI hubs

Recent studies on protein functions primarily focused on this con-
formational diversity of proteins [11], which is found to be negatively
correlated with evolutionary rate [42], mainly because it increases the
functional diversity of proteins. Hence, we look for the conformational
diversity of MI and SI hubs present in HK and TS PPIN. Accordingly, we
found that MI proteins possess a significantly higher conformational
diversity than SI proteins only for TSH class and not the HKH coun-
terpart (Table 2).

Fig. 1. Evolutionary rate (dN/dS ratio) differ-
ences between MI and SI proteins of HKH and
TSH class of genes in ‘small’ (protein length = 24
amino acids - 473 amino acids; N = 3383) and
‘large’ (protein length = 474 amino acids - 8924
amino acids; N = 3391) proteins based on the
median protein length (=474 amino acids).

Fig. 2. Average gene expression level difference among MI and SI proteins of HKH and
TSH class of genes. P value indicates significance level derived from Mann-Whitney U
test.

Fig. 3. Average number of miRNA target per gene difference among MI and SI proteins of
HKH and TSH class of genes. P value indicates significance level derived from Mann-
Whitney U test.

K. Biswas et al. Genomics 110 (2018) 283–290

286



Additionally, protein functional diversity between the paralogous
pairs has long been treated as one of the key guiding factors of protein
evolution [43–47]. Although gene duplication initially leads to the re-
laxation of purifying selection, the subsequent functional divergence
between paralogs imposes selective constraints and slows down the
evolutionary rate [48,49]. In this study, we noticed that MI proteins
have a significantly higher functional divergence than SI proteins
within the TSH class but not in HKH class (Table 2), indicating the
selective constraints are higher for MI-TSH groups, which may be the
underlying cause of their slower evolutionary rates. Furthermore, it was
also reported that proteins performing core biological processes like
metabolism, protein synthesis and its transport are largely conserved
across species compared to the proteins involved in more regulatory
processes like transcription factor binding or signal transduction [47].
Using gene ontology (GO) terms for the GO domain ‘biological process’
(GO-BP) [47] we noticed that number of core functions differ in MI and
SI only within TSH but not in HKH (Table 2). However, the number of
regulatory functions does not differ between the MI and SI proteins
within both TSH and HKH classes. Thus, differences in conformational
diversity along with functional diversity and association with core
functions may impose higher selection pressure on TSH_MI compared to

TSH_SI, whereas such differences are not attributable to MI and SI
classes of HKH proteins.

3.4. Role of tissue-specificity similarity and protein intrinsic disorder
content of protein partners on its evolutionary rate

Tissue-specific proteins making fewer interactions evolve faster than
highly interacting housekeeping proteins [16]. An earlier study also
deciphered the influence of interacting partners' properties on a pro-
tein's evolutionary rate [50]. Additionally, analysis of TSH and HKH
genes' partners revealed that partners of TSH genes evolve slower than
partners of HKH genes [22]. Thereby, we sought to investigate whether
the tissue distribution of TSH genes and their interacting partners has
any role in evolutionary rate. To do this, we constructed a tissue-spe-
cific similarity index according to the protein and its partner's tissue
expression profile (explained in the Materials and methods section).
Interestingly, we obtained a negative correlation (ρ= −0.189,
n = 4128, P = 1 × 10−6) between tissue expression similarity with
evolutionary rate, which also demonstrated that when a gene and its'
interacting partner have a higher tissue-expression similarity, they are
evolutionary more conserved than gene having interacting partners
with lower tissue expression similarity (Fig. 4). Almost all of the
housekeeping genes share similar tissue similarity with their partners as
they are ubiquitously expressed in all tissue types.

Moreover, in an interaction network, SI proteins are more dis-
ordered than MI proteins [26,51] and perform transient interactions
with their partners. However, when the interacting partners' intrinsic
disorder content was analyzed in both TSH and HKH, we found sig-
nificantly higher protein disorder content in interacting partners of
TSH_SI than that of TSH_MI. Such a significant difference was not ob-
served between the two HKH groups (Fig. 5). Thus, both partner pro-
teins' tissue expression similarity, as well as intrinsic disorder content,
may impact on a dissimilar evolutionary rate between TSH_MI and
TSH_SI.

3.5. Influence of the studied factors on evolutionary rate

To examine whether each of the above mentioned parameters has a
significant influence on evolutionary rate, we performed Spearman's
rank correlation analysis by considering dN/dS as scalar dependent
variable and all other parameters as explanatory variables. We found
that dN/dS ratio upholds significant negative correlations with mean
miRNA count, expression level, conformational diversity, functional
diversity, core functional processes, domain similarity, partners'
average disorder content and tissue similarity with partners (Table 3).
Next, we intend to find out whether protein's own properties or its
partners' properties are more influential in guiding protein evolutionary
rate or if they act in a mutually exclusive way. For this we have per-
formed partial correlation analysis in two wayse we have controlled all

Table 2
Average values for structural and functional properties of TSH and HKH. P-value indicates
significance level derived from Mann-Whitney U test [‘*’ denotes significant differences].

Parameters Classes of genes Average
value

Significance level

Average
conformational
diversity

TSH_MI
(n = 198)

1.35 P = 3.38 × 10−2⁎,
α < 0.05

TSH_SI
(n = 229)

1.21

HKH_MI
(n = 84)

1.33 P = 4.54 × 10−1,
α > 0.05

HKH_SI
(n = 137)

1.21

Average functional
diversity per gene

TSH_MI
(n = 427)

0.65 P = 8.89 × 10−3⁎,
α < 0.01

TSH_SI
(n = 1267)

0.61

HKH_MI
(n = 43)

0.65 P = 3.72 × 10−1,
α > 0.05

HKH_SI
(n = 82)

0.67

Average core function
per gene

TSH_MI
(n = 820)

2.14 P = 3.19 × 10−2⁎,
α < 0.05

TSH_SI
(n = 2602)

2.05

HKH_MI
(n = 209)

2.44 P = 4.29 × 10−1,
α > 0.05

HKH_SI
(n = 548)

2.32

Fig. 4. Evolutionary rate (dN/dS ratio) differences between
tissue-specific genes with similar (TSHshared) and different
(TSHdiverged) tissue-specificity similarity with their inter-
acting partners. Human-Mouse and Human-Chimpanzee
1:1 orthologs were used to calculate the dN/dS ratio. P-
values are provided in the figure.
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the partners' properties (such as partners' average disorder content and
tissue similarity with partners) and noticed the correlation between
protein's own properties and evolutionary rate and also vice versa. The
result is delineated in (Table 4) which indicates that both the protein's
and its interacting partners' properties guide the evolutionary rate in a
mutually exclusive way. By using linear regression analysis we have
confirmed that evolutionary rate (dN/dS ratio) of proteins are in-
dependently influenced by its own properties like number of miRNAs
per gene (β = −0.142, P= 1.45 × 10−2) as well as protein's inter-
acting partner properties such as tissue expression similarity
(β = 0.080, P = 4.01 × 10−2) are also important for determining the
evolutionary rate of hub proteins across housekeeping and tissue spe-
cific genes.

4. Discussion

Integrating the protein-protein interaction (PPI) network with high-
throughput gene expression data, researchers divided all human PPI
network into sub-network of housekeeping or global and tissue-specific
or local interacting parts. Highly connected (hub) proteins within PPI
network are further divided into multi-interface (MI or party-hub) and
single-interface (SI or date-hubs) hubs, based on the number of their
interacting interface. MI-hubs, in general, evolve slower than SI hubs

[7] due to evolutionary constraints acting on larger surfaces. When the
hub proteins from both the housekeeping (HK) and tissue-specific net-
work (TS) were classified into MI and SI hubs, we found that MI pro-
teins evolve slower than SI proteins in the TS PPIN, but not in the HK
PPIN (Table 1), a trend slightly different from previous study [10].
Similar results were obtained after splitting all proteins in ‘Small’
(below-median) and ‘Large’ (above-median) bins, depending on their
length, indicating the protein size has no significant impact on the
observations (Fig. 1). As evolutionary rate exhibits a strong negative
correlation with gene expression level (ρ= −0.168,
P = 9.75 × 10−4), we presumed that comparison of gene expression
level between MI and SI genes within HK- and TS-hubs might provide
insight into their evolutionary rate difference. We found a significantly
higher gene expression level in MI proteins in TSH class, whereas in
HKH class, both MI and SI express at a similar level (Fig. 2). Thus, gene
expression level seems to be a major determinant influencing the evo-
lutionary rate of MI and SI proteins within HK and TS network. How-
ever, gene expression is regulated by numerous factors, of which
miRNAs are a predominant regulator. Accordingly, the hub proteins are
likely to have a high level of miRNA regulation with diverse local and
global coordinated regulation [52]. Since regulatory stringency is
supposed to be similar in all housekeeping genes, we did not get any
significant difference in number of miRNA targets between MI and SI
hubs. Whereas, tissue-restricted genes with diverse local sub-networks
hold different regulatory constraint between MI and SI hubs, reflected
by a greater number of miRNA per gene in MI_TSH proteins (Fig. 3),
despite their higher gene expression, which is quite contradictory.
However, our result is in agreement with the fact that genes with more
miRNA target sites evolve slowly [53]. Now, the interaction between
proteins in PPIN may be aided by multiple conformations of the same
protein. This diverse conformation of a protein facilitates greater se-
lection pressure on the protein-coding gene to maintain the structural
domain/s via which the proteins interact. A strong negative correlation
(ρ= −0.186, P = 1.75 × 10−4) between dN/dS and protein con-
formational diversity, as observed in our study also strengthen this
hypothesis. Additionally, for duplicated genes, functional diversity be-
tween paralogs is a significant contributor to protein evolutionary rate,
as it builds up selective constraints that were reduced immediately after
gene duplication. It is fascinating to note that the global interacting
proteins (HKH-MI and HKH-SI) with cellular maintenance purposes do
not show a significant difference in conformational diversity or func-
tional diversity. Conversely, local network of TSH proteins significantly
differs in both conformational and functional diversity. This may be due
to the fact that sub-networks within TS PPIN might encounter diverse
selective pressure for maintaining these various expressional, con-
formational and functional similarities with their interacting partners.

Next, we intended to identify the contribution of interacting part-
ners on proteins' evolutionary rate. As proteins collaborate to function
as a unit, the impact of its partner on its evolutionary rate must be
sought out. A significant negative correlation between tissue expression

Fig. 5. Interacting partners' average disorder content for a given hub protein with dif-
ference among MI and SI proteins of HKH and TSH class of genes. P value indicates
significance level derived from Mann-Whitney U test.

Table 3
Values of nonparametric correlation analysis using dN/dS ratio as a scalar dependent
variable [‘*’ denotes significant differences].

Explanatory variables Spearman's rho (ρ)
correlation
coefficient

Significance level (two-
tailed)

Number of miRNA per gene
(n = 3519)

−0.271 P = 1× 10−6⁎,
α < 0.001

Gene expression level
(n = 4148)

−0.073 P = 2× 10−6⁎,
α < 0.001

Conformational diversity
(n= 4148)

−0.105 P = 1× 10−6⁎,
α < 0.001

Average of disorder residue
in interacting partner
(n= 1710)

0.171 P = 1× 10−6⁎,
α < 0.001

Average functional
divergence
(n= 742)

−0.075 P = 4.19 × 10−2⁎,
α < 0.05

Tissue expression similarity
of protein and its
partner
(4128)

−0.113 P = 1× 10−6⁎,
α < 0.001

Table 4
Values of partial correlation analysis using dN/dS ratio as a scalar dependent variable [‘*’
denotes significant differences].

Explanatory variables Correlation value
(r)

Significance level

Control for partners' properties
miRNA

(n = 307)
−0.152 P = 7.37 × 10−3⁎, α < 0.01

Core functions
(n = 307)

−0.116 P = 4.17 × 10−2⁎, α < 0.05

Control for proteins' intrinsic properties
Average disorder content

in partners
(n = 304)

0.115 P = 4.38 × 10−2⁎, α < 0.05
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similarities with evolutionary rate suggests that when a protein and its
interacting partners possess a higher tissue expression similarity, it
exhibit more evolutionary conservation, which is also supported by the
differences within TSH proteins when they show similar (TSHshared) and
different (TSHdiverged) tissue-specificity similarity with their interacting
partners (Fig. 4). The interacting partners of TSH_SI proteins was found
to content higher protein intrinsic disorder content than TSH_MI class
(Fig. 5), indicating their higher propensity to form transient tissue-
specific interactions that are signatures of this group of proteins.
Moreover, interactions involving proteins with lower tissue-expression
similarities are also essential to maintain the connections required for
the combined performance of the proteins in PPI network. Therefore,
linking housekeeping and tissue-specific genes are much vital for
maintaining the overall performance of a human body.

Furthermore, we performed a statistical analysis combining the
impact of both proteins' own property (such as expression level, number
of miRNA count, conformational diversity and other functional prop-
erties) and its partners' properties (like intrinsic protein disorder and
tissue expression similarity of the interacting protein partners) on
proteins' evolutionary rate. Our findings suggest that genomic novelties
are more introduced by intermodular hubs or SI-hubs in the tissue-
specific network only. Whereas, MI proteins remain highly conserved
within this network for performing core cellular processes and are
under more stringent regulation. Conversely, the housekeeping genes
with greater cellular maintenance functions might not permit the
HKH_SI to undergo mutation, as it could be lethal to the system. Our
findings illustrate that evolutionary rate of proteins is equally governed
by both its partner properties along with protein's own properties.

5. Conclusion

Our study demonstrates that lower evolutionary rate of MI hubs
than SI hubs is only present in the TSH but not in HKH of human PPIN,
an analysis done for the first time. We here, provide statistical evidence
to establish that both structural and molecular properties of protein as
well as interacting partners implicated for determining protein evolu-
tionary rate. Thus, our study makes new findings in exploring inter-
acting partner's properties in the conservation of global and local pro-
tein interaction networks.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.ygeno.2017.11.006.
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